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Main theme of the talk
There is a connection between Gödel’s second incompleteness
theorem and well-foundedness of certain computability-theoretic
partial orders



Some Definitions

Hyperarithmetic reducibility

X ≤H Y means X is ∆1
1 definable using Y as a parameter

Analogous to Turing reducibility (∆1
1 instead of ∆0

1)

Hyperjump of X

OX means the Π1
1-complete set relative to X

Analogous to the Turing jump (Π1
1 instead of Σ0

1)

Church-Kleene ordinal
ωX
1 means the least ordinal with no presentation computable from

X



A Theorem

Theorem
There is no sequence of reals A0,A1, . . . such that for each n

OAn+1 ≤H An.

First proof

By results of Spector, if OA ≤H B then ωA
1 < ωB

1 . So if
A0,A1,A2, . . . was such a sequence then we would have

ωA0
1 > ωA1

1 > ωA2
1 > . . .



We can replace the use of ordinals in the previous proof with an
appeal to the second incompleteness theorem. This lowers the
complexity of the proof (in the sense of reverse math).



Some Suggestive Facts

Definition
A β-model is an ω-model of second order arithmetic that is correct
about all Σ1

1 facts

Fact
(ACA0 proves) OX exists =⇒ X is contained in a β-model

Fact
(ACA0 proves) β-models satisfy ACA0



Incompleteness =⇒ Well-foundedness

An alternative proof?

I Work in the theory T = ACA0+ “there is such a sequence”

I Let A0,A1, . . . be such a descending sequence

I OA1 exists so there is a β-model containing A1

I The β-model satisfies ACA0 and contains A1,A2, . . .

I The tail of a descending sequence is still a descending
sequence and being a descending sequence is absolute
between β-models

I So the β-model satisfies T

I So T proves its own consistency

I By the second incompleteness theorem, T is inconsistent



Incompleteness =⇒ Well-foundedness

An alternative proof?

I Work in the theory T = ACA0+ “there is such a sequence”

I Let A0,A1, . . . be such a descending sequence

I OA1 exists so there is a β-model containing A1

I The β-model satisfies ACA0 and contains A1,A2, . . . but not
necessarily a real coding this sequence

I The tail of a descending sequence is still a descending
sequence and being a descending sequence is absolute
between β-models

I So the β-model satisfies T

I So T proves its own consistency

I By the second incompleteness theorem, T is inconsistent

Actually, this proof is not quite correct



Incompleteness =⇒ Well-foundedness

A Correct Proof
The main idea is to show that if there is a descending sequence
then there is one which is relatively simple—e.g. hyperarithmetic in
A1. To do this, use the Kleene basis theorem.

Kleene Basis Theorem
(ACA0 proves) If X is a real such that OX exists and if ϕ is a Σ1

1

formula and there is some real Y such that ϕ(X ,Y ) holds then
there is some real Y such that Y ≤T OX

So it suffices to show that there is a nonempty Σ1
1(A2) class

consisting only of descending sequences



Incompleteness =⇒ Well-foundedness

A Correct Proof
The main idea is to show that if there is a descending sequence
then there is one which is relatively simple—e.g. hyperarithmetic in
A1. To do this, use the Kleene basis theorem.

It suffices to show that there is a nonempty Σ1
1(A2) class consisting

only of descending sequences

One way to do this is to pick a countable coded β-model, M, that
is hyperarithmetic in A2 and use the formula that says

“X is a sequence of reals so that for each n, Xn is in M and
M � (OXn+1 exists and OXn+1 ≤H Xn)”

(In fact this formula is actually arithmetic in M, though that
doesn’t change the proof.)



Incompleteness =⇒ Well-foundedness

Observation
This proof shows that the theorem is provable in ACA0 which is
not apparent from the first proof.



Incompleteness =⇒ Well-foundedness

General Strategy

I Work in some theory T and assume there is a descending
sequence

I Show that there is a model of T containing a tail of the
sequence

I Tail of a descending sequence is still a descending sequence

I Conclude that T + “there is a descending sequence” proves
its own consistency

Main Difficulty

Need to pick a theory T that is weak enough that the existence of
a descending sequence guarantees models of the theory exist but
strong enough to prove that the descending sequence guarantees
this.



Incompleteness =⇒ Well-foundedness

Example 1: Hyperdegrees

There is no sequence of hyperdegrees, each hyp above the
hyperjump of the next

Example 2: Turing degrees

Under certain conditions there is no sequence of Turing degrees,
each Turing above the Turing jump of the next

Theorem (Steel)

If P is an arithmetic relation then there is no sequence
A0,A1,A2, . . . such that for each n

I An+1 is the unique X such that P(An,X )

I A′
n+1 ≤T An

Steel’s original proof used only recursion theory, but Harvey
Friedman later gave a proof along the lines of the general strategy
outlined here



Incompleteness =⇒ Well-foundedness

We have seen how the second incompleteness theorem can be used
to prove the well-foundedness of some computability-theoretic
partial-orders

Actually, the connection goes both ways.

Well-foundedness =⇒ Incompleteness

The well-foundedness of computability-theoretic partial orders can
sometimes imply semantic versions of the second incompleteness
theorem



Semantic Versions of Second Incompleteness

Gödel’s second incompleteness theorem

A consistent theory cannot prove its own consistency

Consistent = has a model

Semantic version of second incompleteness

If T has a model then it has a model with no models coded in it.

Typically T is a theory of second order arithmetic which is strong
enough to prove Gödel’s completeness theorem.

By changing what type of models we consider, we can get
statements that do not trivially follow from the usual second
incompleteness theorem.



Well-foundedness =⇒ Incompleteness

Theorem (Mummert–Simpson)

If T is an arithmetically axiomatized theory in the language of
second order arithmetic such that T has a β-model, then T has a
β-model that contains no countable coded β-models of T

The original proof by Mummert and Simpson uses the regular
second incompleteness theorem.

We can replace the appeal to the second incompleteness theorem
by using the ordinals—in particular the well-foundedness of the
partial order from the first half of the talk. This also yields a
slightly stronger result where T does not have to be arithmetically
axiomatizable.



Well-foundedness =⇒ Incompleteness

Theorem (Mummert–Simpson)

If T is a theory in the language of second order arithmetic such
that T has a β-model, then T has a β-model that contains no
countable coded β-models of T

Proof sketch

I Suppose not. Find a sequence of β-models M0,M1,M2, . . .
such that each Mn+1 is coded in Mn

I Since Mn is a β-model it is correct about all Π1
1 facts about

Mn+1

I So OMn+1 is arithmetic in Mn

I So OMn+1 ≤H Mn, contradicting the first theorem in this talk



Well-foundedness =⇒ Incompleteness

Observation
This is slightly stronger than the theorem originally proved by
Mummert and Simpson, which was only for arithmetically
axiomatized theories.



Well-foundedness =⇒ Incompleteness

Main Observation
The lack of a minimal model can imply a descending sequence in
some computability-theoretic partial order.

Example 1: β-models

If T is any theory such that T has a β-model then T has a
β-model with no countable coded β-models of T .

Example 2: ω-models of a theory extending ACA0 (Steel)

If T is an arithmetically axiomatized theory extending ACA0 such
that T has an ω-model then T has an ω-model with no countable
coded ω-models of T .



Conclusion

In some cases, well-foundedness can be replaced with the second
incompleteness theorem and vice-versa. Switching from one to the
other can result in a sharpened version of the original theorem.



Thank you!


