Monadic second order logic as a model companion

Sam van Gool
samvangool@me.com

University of Utrecht (until 31 Aug) / Paris (starting 1 Sept)

Logic Colloquium, Prague
13 August 2019
Automata and logic: example

- **A programming problem**: given a natural number in binary, $w \in \{0, 1\}^*$, determine if w is congruent to 1 modulo 3.

Solution 1: a (deterministic) automaton A: $q_0 q_1 q_2$ 1 0 1 0 0 1

Answer yes iff A accepts w.

Solution 2: a monadic second order formula $\phi(W_0, W_1)$:

$\exists Q_0 \exists Q_1 \exists Q_2 (Q_0(first) \land Q_1(last) \land \text{Partition}(Q_0, Q_1, Q_2) \land \forall x ([W_0(x) \land Q_0(x) \rightarrow Q_0(Sx)] \land [W_1(x) \land Q_0(x) \rightarrow Q_1(Sx)]) \land ...)$

Answer yes iff $w = (W_0, W_1)$ makes ϕ true.
Automata and logic: example

- A programming problem: given a natural number in binary, \(w \in \{0, 1\}^* \), determine if \(w \) is congruent to 1 modulo 3.

- Solution 1: a (deterministic) automaton \(A \):

Answer yes iff \(A \) accepts \(w \).
Automata and logic: example

- A programming problem: given a natural number in binary,
 \(w \in \{0, 1\}^* \), determine if \(w \) is congruent to 1 modulo 3.

- Solution 1: a (deterministic) automaton \(A \):

```
\[
\begin{array}{ccc}
0 & 1 & 1 \\
\downarrow & \downarrow & \downarrow \\
q_0 & q_1 & q_2 \\
1 & 0 & 0 \\
\end{array}
\]
```

Answer yes iff \(A \) accepts \(w \).

- Solution 2: a monadic second order formula \(\varphi(W_0, W_1) \):

\[
\exists Q_0 \exists Q_1 \exists Q_2 (Q_0(\text{first}) \land Q_1(\text{last}) \land \text{Partition}(Q_0, Q_1, Q_2) \land \\
\forall x ([W_0(x) \land Q_0(x) \rightarrow Q_0(Sx)] \land [W_1(x) \land Q_0(x) \rightarrow Q_1(Sx)] \land \ldots))
\]

Answer yes iff \(w = (W_0, W_1) \) makes \(\varphi \) true.
Regular languages

Regular languages over a finite alphabet \(\Sigma \) are subsets \(L \subseteq \Sigma^\omega \) which are ...

- recognizable by a finite automaton;

or, equivalently,

- definable by a formula of S1S, the monadic second order logic of one successor.

Büchi 1960
A model complete theory

A functional language \mathcal{L}: Boolean algebra operations ($\bot, \cup, -$), two unary functions, X and F, and a constant I.

Theorem

The first order L-theory of $P(\omega)$ is model complete.

A theory T^* is model complete iff every formula is T^*-equivalent to an existential formula.
A model complete theory

A functional language \mathcal{L}: Boolean algebra operations ($\bot, \cup, -$), two unary functions, X and F, and a constant I.

The Boolean algebra $\mathcal{P}(\omega)$ is an \mathcal{L}-structure with:

- $X_a := \{ t \in \omega \mid t + 1 \in a \}$,
- $F_a := \{ t \in \omega \mid \exists t' \geq t : t' \in a \}$,
- $I := \{0\}$.

Theorem

The first order \mathcal{L}-theory of $\mathcal{P}(\omega)$ is model complete.

A theory \mathcal{T}^* is model complete iff every formula is \mathcal{T}^*-equivalent to an existential formula.

Ghilardi, G. JSL 2017
A model complete theory

A functional language \mathcal{L}: Boolean algebra operations ($\bot, \cup, -$), two unary functions, X and F, and a constant I.

The Boolean algebra $\mathcal{P}(\omega)$ is an \mathcal{L}-structure with:

- $X a := \{ t \in \omega \mid t + 1 \in a \}$,
- $F a := \{ t \in \omega \mid \exists t' \geq t : t' \in a \}$,
- $I := \{0\}$.

Theorem

The first order \mathcal{L}-theory of $\mathcal{P}(\omega)$ is model complete.

A theory T^* is **model complete** iff every formula is T^*-equivalent to an existential formula.

Ghilardi, G. JSL 2017
Proving model completeness with automata

L-theory of $\mathcal{P}(\omega)$
Proving model completeness with automata

- Word automaton
- "standard translation"
- Büchi's Theorem
- existential L-description

L-theory of $\mathcal{P}(\omega)$
Proving model completeness with automata

- "standard translation"
- \(\mathcal{L} \)-theory of \(\mathcal{P}(\omega) \)
- Büchi’s Theorem
- Word automaton
Proving model completeness with automata

- \mathcal{L}-theory of $\mathcal{P}(\omega)$
- S1S
- “standard translation”
- Büchi’s Theorem
- Word automaton
- Existential \mathcal{L}-description
Proving model completeness with automata

- L-theory of \(P(\omega) \)
- Word automaton

“standard translation”

S1S

Büchi’s Theorem

existential \(L \)-description
An existential L-description of a word automaton

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a word automaton over a finite alphabet Σ, i.e., a function $\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$, an initial state $q_0 \in Q$ and a subset $F \subseteq Q$ of final states.
An existential \mathcal{L}-description of a word automaton

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a word automaton over a finite alphabet Σ, i.e., a function $\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$, an initial state $q_0 \in Q$ and a subset $F \subseteq Q$ of final states.

Write $\Sigma = \{0, \ldots, s\}$, $Q = \{0, \ldots, m\}$, $q_0 = 0$.

A word $W: \omega \rightarrow \Sigma$ is a partition (W_0, \ldots, W_s) of ω; $W_j = W^{-1}(j)$.
An existential \mathcal{L}-description of a word automaton

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a **word automaton** over a finite alphabet Σ, i.e., a function $\delta : Q \times \Sigma \to \mathcal{P}(Q)$, an initial state $q_0 \in Q$ and a subset $F \subseteq Q$ of final states.

- Write $\Sigma = \{0, \ldots, s\}$, $Q = \{0, \ldots, m\}$, $q_0 = 0$.

- A word $W : \omega \to \Sigma$ is a partition (W_0, \ldots, W_s) of ω; $W_j = W^{-1}(j)$.

Key Observation. The automaton A accepts a word $W : \omega \to \Sigma$ iff $\mathcal{P}(\omega), [w_i \mapsto W_i] \models \alpha(w_0, \ldots, w_s)$, where α is the $\exists \mathcal{L}$-formula:
An existential \mathcal{L}-description of a word automaton

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a **word automaton** over a finite alphabet Σ, i.e., a function $\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$, an initial state $q_0 \in Q$ and a subset $F \subseteq Q$ of final states.

- Write $\Sigma = \{0, \ldots, s\}$, $Q = \{0, \ldots, m\}$, $q_0 = 0$.

- A word $W: \omega \rightarrow \Sigma$ is a partition (W_0, \ldots, W_s) of ω; $W_j = W^{-1}(j)$.

Key Observation. The automaton A accepts a word $W: \omega \rightarrow \Sigma$ iff $\mathcal{P}(\omega), [w_i \mapsto W_i] \models \alpha(w_0, \ldots, w_s)$, where α is the $\exists \mathcal{L}$-formula:

$$
\exists q_0, \ldots, q_m ("the q_i partition \omega" \land \bigwedge_{0 \leq i \leq m} \bigwedge_{0 \leq j \leq s} \left(q_i \cap w_j \subseteq \bigcup_{k \in \delta(i,j)} X q_k \right))
$$
An existential \mathcal{L}-description of a word automaton

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a **word automaton** over a finite alphabet Σ, i.e., a function $\delta: Q \times \Sigma \to \mathcal{P}(Q)$, an initial state $q_0 \in Q$ and a subset $F \subseteq Q$ of final states.

Write $\Sigma = \{0, \ldots, s\}$, $Q = \{0, \ldots, m\}$, $q_0 = 0$.

A word $W: \omega \to \Sigma$ is a partition (W_0, \ldots, W_s) of ω; $W_j = W^{-1}(j)$.

Key Observation. The automaton A accepts a word $W: \omega \to \Sigma$ iff $\mathcal{P}(\omega), [w_i \mapsto W_i] \models \alpha(w_0, \ldots, w_s)$, where α is the $\exists \mathcal{L}$-formula:

$$\exists q_0, \ldots, q_m ("\text{the } q_i \text{ partition } \omega" \land \bigwedge_{0 \leq i \leq m} \left(q_i \cap w_j \subseteq \bigcup_{k \in \delta(i,j)} X q_k \right))$$

$$\land I \subseteq q_0 \land F \left(\bigcup_{i \in F} q_i \right) = \top).$$
The theory is a model companion

A theory T^* is a model companion of a theory T iff T^* is model complete, and T and T^* have the same universal consequences.

Theorem

The \mathcal{L}-theory of $\mathcal{P}(\omega)$ is the model companion of the theory of \mathcal{L}-structures axiomatized by the following universal sentences:
The theory is a model companion

A theory T^* is a model companion of a theory T iff T^* is model complete, and T and T^* have the same universal consequences.

Theorem

The \mathcal{L}-theory of $\mathcal{P}(\omega)$ is the model companion of the theory of \mathcal{L}-structures axiomatized by the following universal sentences:

- equations for Boolean algebras;
- X is a Boolean homomorphism;
- Fa is the least fixed point of $x \mapsto a \lor Xx$;
- I is an atom which is below Fa for any $a \neq \bot$, and $XI = \bot$.

Ghilardi, G. JSL 2017
Binary trees

The full binary tree is 2^*, finite sequences of 0’s and 1’s.
Binary trees

The full binary tree is 2^*, finite sequences of 0's and 1's. To obtain a model complete theory, more complex operators are needed to express acceptance by a tree automaton.
Binary trees

The full binary tree is 2^*, finite sequences of 0’s and 1’s. To obtain a model complete theory, more complex operators are needed to express acceptance by a tree automaton.

A functional language \mathcal{L}_2 : Boolean algebra operations (\bot, \cup, \neg), constant I, unary operations X_0, X_1, binary operations EU and AF.
Binary trees

The full binary tree is 2^*, finite sequences of 0's and 1's.
To obtain a model complete theory, more complex operators are needed to express acceptance by a tree automaton.
A functional language L_2: Boolean algebra operations ($\bot, \cup, -$), constant I, unary operations X_0, X_1, binary operations EU and AF.
The Boolean algebra $P(2^*)$ is an L_2-structure with

- $I := \{\epsilon\}$,
- $X_i a := \{t \in \omega \mid t \cdot i \in a\}$ for $i = 0, 1$,
- $t \in EU(a, b)$ iff there exists a path $t = t_0, \ldots, t_n$ such that, for $i < n$, $t_i \in a$, and $(\text{Until}) \ t_n \in b$,.
Binary trees

The full binary tree is 2^*, finite sequences of 0’s and 1’s. To obtain a model complete theory, more complex operators are needed to express acceptance by a tree automaton.

A functional language \mathcal{L}_2 : Boolean algebra operations ($\bot, \cup, -$), constant I, unary operations X_0, X_1, binary operations EU and AF.

The Boolean algebra $\mathcal{P}(2^*)$ is an \mathcal{L}_2-structure with

- $I := \{\epsilon\}$,
- $X_i a := \{t \in \omega \mid t \cdot i \in a\}$ for $i = 0, 1$,
- $t \in EU(a, b)$ iff there exists a path $t = t_0, \ldots, t_n$ such that, for $i < n$, $t_i \in a$, and (Until) $t_n \in b$,
- $t \in AF(a, -b)$ iff for all infinite paths $t = t_0, t_1, \ldots$ there is a (Future) $t_i \in a$, provided that $t_j \in b$ for infinitely many j.
Theorem

The \mathcal{L}_2-theory of $\mathcal{P}(2^*)$ is model complete, and is in fact the model companion of an \mathcal{L}_2-theory with a finite universal axiomatization.

Ghilardi, G. LICS 2016
Theorem

The \mathcal{L}_2-theory of $\mathcal{P}(2^*)$ is model complete, and is in fact the model companion of an \mathcal{L}_2-theory with a finite universal axiomatization.

Ghilardi, G. LICS 2016

- Proving model completeness crucially uses tree automata originally developed for deciding S2S (Rabin 1969).
- We obtain an analogous result for ‘bisimulation-invariant’ MSO, i.e., the modal μ-calculus (Janin-Walukiewicz 1996).
Ongoing work and questions

- Ongoing work: extending these results to general trees; this requires an infinite language that can count successors.
- Where do \mathcal{L}-structures and \mathcal{L}_2-structures fit in model theory?
 - Context: model companions also exist for Heyting algebras and certain modal algebras; but the methods are different.
- Can automata methods be useful for proving the model completeness of other theories (especially if they have a ‘computation’ flavor)?
Monadic second order logic as a model companion

Sam van Gool
samvangool@me.com

University of Utrecht (until 31 Aug) / Paris (starting 1 Sept)

Logic Colloquium, Prague
13 August 2019