# Non-monotonic abstract multiset consequence relations

Libor Běhounek, Petr Cintula, Tomáš Lávička

University of Ostrava & Czech Academy of Sciences

Logic Colloquium 2019, Prague

### Substructural logics

- = LK/LJ minus some structural rules (optionally: plus some axioms)
  - Weakening:  $\Gamma_1, \Gamma_2 \Rightarrow \Delta / \Gamma, A, \Gamma_2 \Rightarrow \Delta$
  - Contraction:  $\Gamma_1$ , A, A,  $\Gamma_2 \Rightarrow \Delta / \Gamma_1$ , A,  $\Gamma_2 \Rightarrow \Delta$
  - Exchange:  $\Gamma_1, A, \Gamma_2, B, \Gamma_3 \Rightarrow \Delta / \Gamma_1, B, \Gamma_2, A, \Gamma_3 \Rightarrow \Delta$  (and similarly on the right-hand side)
- Logics of (various classes of) residuated lattices
- Include: Lambek calculus, relevant, linear, and fuzzy logics, ...
- Interpretation: categorial grammar, possible-world semantics, degrees of truth, formulae-as-resources, ...

## Tarski consequence relation $\vdash \subseteq \mathcal{P}(\mathsf{Fm}_{\mathcal{L}}) \times \mathsf{Fm}_{\mathcal{L}}$ :

- **1** Reflexivity: If  $\varphi \in X$  then  $X \vdash \varphi$
- **2** Monotonicity: If  $X \vdash \varphi$  and  $X \subseteq Y$ , then  $Y \vdash \varphi$
- **3** Cut: If  $Y \vdash \varphi$  and  $X \vdash \psi$  for all  $\psi \in Y$ , then  $X \vdash \varphi$
- 4 (Finitarity, substitution invariance)

### Operates on sets of premises

- ⇒ Presupposes the structural rules
- ⇒ Can only represent the external consequence relation of substructural logics = preservation of designated values

The internal consequence in substructural logics (representing the validity of substructural implication) requires a non-Tarskian relation, with sequences or (assuming exchange) multisets of premises

### Multiset consequence relations:

- Avron (1992) single-conclusion, without weakening
- Cintula-Paoli, Cintula-Gil-Férez-Moraschini-Paoli (2019)
  multiple-conclusion, with weakening
- Běhounek-Cintula-Lávička, (this talk, in progress)
  multiple-conclusion, without weakening

### Why:

- Some logics have no single-conclusion presentation (eg, Łukasiewicz:  $[p\otimes q]\vdash [p,q]$  non-representable)
- To include weakening-free logics (relevant, uninorm fuzzy, FL<sub>e</sub>, ...) (relevance, degrees of full truth, negative resources, ...)
- Assuming exchange (simpler, still reasonably broad)

#### Non-monotonic multiset deductive relation:

(finite multiset ⊢ finite multiset, ⊗-conjunctive reading on both sides)

- **1** Reflexivity:  $\Gamma \vdash \Gamma$
- **2** Transitivity: If  $\Gamma \vdash \Delta$  and  $\Delta \vdash \Pi$ , then  $\Gamma \vdash \Pi$
- **3** Compatibility: If  $\Gamma \vdash \Delta$ , then  $\Gamma, \Pi \vdash \Delta, \Pi$  (resource separability)

Cf multi-conclusion adaptation of Avron's simple consequence relation:

- **1** Simple reflexivity:  $\varphi \vdash \varphi$
- **2** Finitary cut: If  $\Gamma \vdash \Delta, \varphi$  and  $\Gamma', \varphi \vdash \Delta'$ , then  $\Gamma, \Gamma' \vdash \Delta, \Delta'$
- **3** Combining: If  $\Gamma \vdash \Delta$  and  $\Gamma' \vdash \Delta'$ , then  $\Gamma, \Gamma' \vdash \Delta, \Delta'$  (optional)

Observation:  $refl + comp \iff refl + comb$ 

#### Variants of cut:

- 1 If  $\Gamma \vdash \Pi$  and  $\Pi, \Gamma' \vdash \Delta$ , then  $\Gamma, \Gamma' \vdash \Delta$
- 2 If  $\Gamma \vdash \Delta, \Pi$  and  $\Gamma', \Pi \vdash \Delta'$ , then  $\Gamma, \Gamma' \vdash \Delta, \Delta'$

#### Observation:

$$\mathsf{refl} + \mathsf{cut}_1 \Longrightarrow \mathsf{trans} + \mathsf{comp} \Longrightarrow \mathsf{cut}_2 \Longrightarrow \mathsf{cut}_1 \Longrightarrow \mathsf{cut}_{\mathsf{finitary}}$$

### Corollary:

- Every non-monotonic multiset consequence relation is Avron's (multi-conclusion) simple consequence relation
- Non-monotonic multiset consequence relations can equivalently be defined by Reflexivity and Cut<sub>(1 or 2)</sub>

### Abstract non-monotonic consequence relations (Blok-Jónsson-style):

- Abstract objects instead of multisets of formulas
- Finite multisets show the structure a of dually integral Abelian pomonoid  $\mathbf{M} = (M, \leq, +, 0)$

(for  $\leq$  multiset inclusion, + multiset union, 0 the empty multiset)

#### **Definition**

An abstract non-monotonic consequence relation on a dually integral Abelian pomonoid  $\mathbf{M}=(M,\leq,+,0)$  is a relation  $\vdash$  on M such that:

If  $a \vdash b$  and  $b \vdash c$ , then  $a \vdash c$  (Transitivity)

If  $a \vdash b$ , then  $a + c \vdash b + c$  (Compatibility)

- Finitarity expressible by means of compact elements of M
- Substitution-invariance expressible as invariance wrt monoidal actions
- $\blacksquare$   $\vdash$  is a compatible preorder on  $\mathbf{M}$

### Deductively closed theories

In Tarski consequence relations, a deductive closure of  $X\subseteq \mathsf{Fm}_\mathcal{L}$  is the largest set Y st  $X\vdash Y$ , so an *element* of  $\mathcal{P}(\mathsf{Fm}_\mathcal{L})$ 

In multiset consequence relations, the largest multiset need not exist Eg, often  $\Gamma \vdash \Delta$  and  $\Gamma \vdash \Pi$ , but  $\Gamma \not\vdash \Delta \lor \Pi$  in Łukasiewicz logic: Let  $\Gamma = [p,q,p\leftrightarrow q]$ , then  $\Gamma \vdash [p,p]$  and  $\Gamma \vdash [q,q]$ , but  $\Gamma \not\vdash [p,p,q,q]$ 

 $\Rightarrow$  As the deductive closure of a multiset  $\varGamma$  we take the set of all consequences of  $\varGamma$  , so a subset of M

Definition: A deductively closed theory in  $\vdash$  on  $\mathbf M$  is any  $\vdash$ -upset of M

Observation: The family  $\mathsf{Th}(\vdash)$  of all  $\vdash$ -theories is a closure system on M

#### Denote:

- $\mathsf{Th}_{\vdash}(X)$  the smallest  $\vdash$ -theory containing  $X \subseteq M$
- Th<sup>p</sup>( $\vdash$ ) the set of *principal*  $\vdash$ -theories of the form Th $_\vdash(a)$ = the set of all principal  $\vdash$ -upsets

### Proposition:

- Each theory is a union of principal theories
- $Th_{\vdash}(X) = \bigcup_{x \in X} Th_{\vdash}(x)$

#### Theorem:

For  $\vdash$  on  $\mathbf{M}$  define  $+_{\vdash}$  on  $\mathsf{Th}^p(\vdash)$ :  $\mathsf{Th}_{\vdash}(x) +_{\vdash} \mathsf{Th}_{\vdash}(y) = \mathsf{Th}_{\vdash}(x+y)$ 

Then:  $\mathbf{Th}^{\mathsf{p}}_{\vdash} = (\mathsf{Th}^{\mathsf{p}}(\vdash), \subseteq, +_{\vdash}, \mathsf{Th}(0))$  is a dually integral Abelian pomonoid and the mapping  $\mathsf{Th}_{\vdash} \colon \mathsf{M} \to \mathsf{Th}^p(\vdash)$  is a surjective morphism