Logic and Natural Language
Commitments and Constraints

Gil Sagi

University of Haifa

August 13, 2019
The Whole Philosophy of Logic
The Whole Philosophy of Logic

It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true;
The Whole Philosophy of Logic

It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true; and this fact contains in itself the whole philosophy of logic.

(Wittgenstein 1922, § 6.113)
The Whole Philosophy of Logic

It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true; and this fact contains in itself the whole philosophy of logic.
(Wittgenstein 1922, § 6.113)

It is certainly possible to recognize from its form alone that a sentence is analytic;
The Whole Philosophy of Logic

It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true; and this fact contains in itself the whole philosophy of logic. (Wittgenstein 1922, § 6.113)

It is certainly possible to recognize from its form alone that a sentence is analytic; but only if the syntactical rules of the language are given. (Carnap 1937, p. 186)
Outline

1. Introduction

2. Logic and Natural Language
 The Linguistic Project
 The Traditional Project

3. Formalization

4. Semantic Constraints as Commitments
 Semantic Constraints (2014)
 Formalization Constraints (2019)
Natural Language

Formal Language
Natural Language
(Expression of Content)

Formal Language
(Logic)
Natural Language \(\xrightarrow{\text{modelling}}\) Formal Language
Natural Language \(\stackrel{modelling}{\longrightarrow}\) Formal Language

Formal Language \(\stackrel{formalization}{\longrightarrow}\) Natural Language
The Linguistic Project

Logic in Linguistics

The tools of formal logic are used in the descriptive study of natural language (Montague, Davidson, Montague, Chomsky).
Logic in Linguistics

The tools of formal logic are used in the descriptive study of natural language (Montague, Davidson, Montague, Chomsky).
Logic as a Methodology for the Sciences

The logician provides a tool for correct reasoning in science.
Logic as a Methodology for the Sciences

The logician provides a tool for correct reasoning in science.

Its first purpose, therefore, is to provide us with the most reliable test of the validity of a chain of inferences and to point out every presupposition that tries to sneak in unnoticed (Frege 1879, p. 6)
Logic as a Methodology for the Sciences

The logician provides a tool for correct reasoning in science (Frege, Tarski, Carnap, Quine).

Its first purpose, therefore, is to provide us with the most reliable test of the validity of a chain of inferences and to point out every presupposition that tries to sneak in unnoticed (Frege 1879, p. 6)
Normative Matters
Normative Matters

- *logical norms might provide first-personal directives that guide the reasoner;*
- *logical norms might serve to make third-personal evaluations, setting standards or ideals by which to assess an agent’s doxastic state for its logical cogency;*
- *or, finally,*
- *logical norms might play the role of third-personal appraisals by which we criticize, blame, or otherwise hold accountable an agent for her doxastic conduct.*

(Steinberger 2019, p. 7)
Argument Reconstruction (Brun 2014)
Argument Reconstruction (Brun 2014)

Formalization is a stage in a wider process of argument reconstruction, where a text is analysed and is evaluated with respect to the validity of the informal arguments it contains.
Argument Reconstruction (Brun 2014)

Formalization is a stage in a wider process of argument reconstruction, where a text is analysed and is evaluated with respect to the validity of the informal arguments it contains.

This process includes a stage of argument analysis, producing informal inferences where the premisses and conclusions are spelled out, followed by formalization, which produces formal arguments which can be assessed by the rules of a formal system.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Logic and Natural Language</th>
<th>Formalization</th>
<th>Semantic Constraints as Commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true; and this fact contains in itself the whole philosophy of logic. (Wi/t_tgenstein 1922, § 6.113)

It is certainly possible to recognize from its form alone that a sentence is analytic; but only if the syntactical rules of the language are given. (Carnap 1937, p. 186)
It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they are true; and this fact contains in itself the whole philosophy of logic. (Wittgenstein 1922, § 6.113)

It is certainly possible to recognize from its form alone that a sentence is analytic; but only if the syntactical rules of the language are given. (Carnap 1937, p. 186)
Why formalize?

For let the first terms, of the combination of which all others consist, be designated by signs; these signs will be a kind of alphabet. It will be convenient for the signs to be as natural as possible – e.g., for one, a point; for numbers, points; for the relations of one entity with another, lines; for the variation of angles and of extremities in lines, kinds of relations. If these are correctly and ingeniously established, this universal writing will be as easy as it is common, and will be capable of being read without any dictionary; at the same time, a fundamental knowledge of all things will be obtained. . . .

(Leibniz 1966, 10–11)
Why formalize?

For let the first terms, of the combination of which all others consist, be designated by signs; these signs will be a kind of alphabet. It will be convenient for the signs to be as natural as possible – e.g., for one, a point; for numbers, points; for the relations of one entity with another, lines; for the variation of angles and of extremities in lines, kinds of relations. If these are correctly and ingeniously established, this universal writing will be as easy as it is common, and will be capable of being read without any dictionary; at the same time, a fundamental knowledge of all things will be obtained. . . .

(Leibniz 1966, 10–11)
Why formalize?

... The whole of such a writing will be made of geometrical figures, as it were, and of a kind of pictures – just as the ancient Egyptians did, and the Chinese do today. Their pictures, however, are not reduced to a fixed alphabet ... with the result that a tremendous strain on the memory is necessary, which is the contrary of what we propose. (Leibniz 1966, 10–11)
Why formalize?

By moving to a formal language, the reasoner makes explicit their logical and interpretive commitments.
Why formalize?

By moving to a formal language, the reasoner makes explicit their logical and interpretive commitments.

Formalization provides the ground for logical norms to be applied.
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- Reflective Equilibrium?
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- Reflective Equilibrium?
 No: Thagard (1982) and Baumgartner and Lampert (2008)
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- **Reflective Equilibrium?**
 - **No**: Thagard (1982) and Baumgartner and Lampert (2008)

- **Semantic or Inferential?**
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- **Reflective Equilibrium?**
 - **Yes:** Resnik (1985), Peregrin and Svoboda (2013, 2017), and Brun (2014, 2017)
 - **No:** Thagard (1982) and Baumgartner and Lampert (2008)

- **Semantic or Inferential?**
 - **Semantic:** Sainsbury (1993); Baumgartner and Lampert (2008)
 - **Inferential:** Peregrin and Svoboda (2012, 2017)
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- **Reflective Equilibrium?**
 - **Yes:** Resnik (1985), Peregrin and Svoboda (2013, 2017), and Brun (2014, 2017)
 - **No:** Thagard (1982) and Baumgartner and Lampert (2008)

- **Semantic or Inferential?**
 - **Semantic:** Sainsbury (1993); Baumgartner and Lampert (2008)
 - **Inferential:** Peregrin and Svoboda (2012, 2017)

- **Empirical linguistics/psychology have a decisive role?**
Adequate Formalization

An adequate formalization should be in line with judgements of informal validity (Baumgartner & Lampert, 2008)

- **Reflective Equilibrium?**
 - **Yes:** Resnik (1985), Peregrin and Svoboda (2013, 2017), and Brun (2014, 2017)
 - **No:** Thagard (1982) and Baumgartner and Lampert (2008)

- **Semantic or Inferential?**
 - **Semantic:** Sainsbury (1993); Baumgartner and Lampert (2008)
 - **Inferential:** Peregrin and Svoboda (2012, 2017)

- **Empirical linguistics/psychology have a decisive role?**
 - **Yes:** Thagard (1982)
 - **No:** Resnik (1985)
Adequate Formalization

[Log]ogical forms are not simply given and are not found by sheer abstraction. . . [F]ormalizing is not merely abstracting but also involves creative and normative aspects of constructing logical forms (Brun 2014)
Explication (Carnap 1962)

- Exactness
- Similarity
- Simplicity
- Fruitfulness
Explication (Carnap 1962)

• Exactness
• Similarity
• Simplicity
• Fruitfulness

The rules of use of the explicatum are given explicitly, and are constitutive of it.
Explicitly Stated Rules

[The rules which are presented in scholarly books as the rules of logic—we could speak about logical rules in the narrow sense—are in our view not something merely discovered or brought to light by philosophers or logicians, but rather something that acquired a definite shape only after it was explicitly articulated within a theory. (Peregrin & Svoboda 2017, p. 10-11)
Summary up till now

- The explicitly stated rules of a formal language are constitutive of it, and their status as such is the source of their normative force.
Summary up till now

- The explicitly stated rules of a formal language are constitutive of it, and their status as such is the source of their normative force.

- When employing a formal language, one is subject to evaluation vis-à-vis its rules. Indeed, when one uses a formal language, one thereby commits oneself to the norms of following its rules.
Summary up till now

• The explicitly stated rules of a formal language are constitutive of it, and their status as such is the source of their normative force.

• When employing a formal language, one is subject to evaluation vis-à-vis its rules. Indeed, when one uses a formal language, one thereby commits oneself to the norms of following its rules.

• It is important that the rules are explicit, because only then can one properly commit to them and be evaluated according to them. Natural language is a complex, dynamic, natural phenomenon. When we formalize, we rigidify language (see also Peregrin & Svoboda 2017, p. 3).
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations. (\land): I(\phi \land \psi) = T \iff I(\phi) = T \text{ and } I(\psi) = T
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations.
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations.

\[(\land): I(\varphi \land \psi) = T \iff I(\varphi) = T \text{ and } I(\psi) = T\]
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations.

\[allRed, \quad allGreen \]
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations.

\[I(\text{allRed}), \quad I(\text{allGreen}) \]
Semantic Constraints

Fixing something amounts to limiting the admissible interpretations.

\[I(\text{allRed}) \cap I(\text{allGreen}) = \emptyset \]
• \(l(\text{even}) \cap l(\text{odd}) = \emptyset\)
• \(l(\text{bachelor}) \subseteq l(\text{unmarried})\)
• \(l(H_2O) = l(\text{water})\)
• \(l(\text{wasBought}) = l(\text{wasSold})\)
• \(l(\exists) = \{ A \subseteq D : A \neq \emptyset\}\)
• \(l(\forall) \in \{ \{ B \subseteq D : A \subseteq B\} : A \subseteq D\}\)
• \(l(\text{most}) = \{ \langle A, B \rangle \in \mathcal{P}(D)^2 : |A \cap B| > |A \setminus B|\}\)
• \(l(R)\) is a symmetric binary relation.
• \(0 \in l(\text{naturalNumber})\)
• \(l(\text{prime}) = \{ 2, 3, 5, \ldots \}\)
• \(|l(\text{Red})| = 375\) (i.e., the size of the extension of \text{Red} is 375.)
• $I(P) \subseteq D$
• $I(John) \in D$
• $I(abc) = T$ or $I(abc) = F$
• $I(d) \neq I(\land)$
• $I(or) \in \{f_\lor, f_\oplus\}$ where f_\lor is the inclusive or function, and f_\oplus is the xor function from pairs of truth values to truth values.
The Language and its Models

Language
- Primitive expressions (*terms*)
- Complex expressions (*phrases*)

Models

\[M = \langle D, I \rangle \]

- \(D \) (the domain) is a non-empty set.
- \(I \) (the interpretation function) assigns to phrases values from the set-theoretic hierarchy with the members of \(D \cup \{ T, F \} \) as ur-elements.
Semantic Constraints

A *semantic constraint* for L is a sentence in the metalanguage that somehow constrains or limits the admissible models for L. Semantic constraints include implicit universal quantification over models (domains and interpretation functions).
Semantic Constraints

A *semantic constraint* for L is a sentence in the metalanguage that somehow constrains or limits the admissible models for L. Semantic constraints include implicit universal quantification over models (domains and interpretation functions).

Let Δ be a set of semantic constraints. A Δ-model is an *admissible model* by Δ, i.e. a model abiding by the constraints in Δ.
Sentences

A phrase p in L is a *sentence* (w.r.t. Δ) if for every Δ-model $M = \langle D, I \rangle$,

$$I(p) \in \{T, F\}$$
Logical Consequence

Let \(\Delta \) be a set of constraints.

An argument \(\langle \Gamma, \varphi \rangle \) is \(\Delta \)-valid \((\Gamma \models_{\Delta} \varphi) \) if for every \(\Delta \)-model \(M \), if all the sentences in \(\Gamma \) are true in \(M \), then \(\varphi \) is true in \(M \).
Semantic Meta-Constraints

<table>
<thead>
<tr>
<th>Semantic Constraints (2014)</th>
</tr>
</thead>
</table>

- Compositionality
- Closure under isomorphisms
Semantic Meta-Constraints

- Compositionality
Semantic Meta-Constraints

- Compositionality
- Closure under isomorphisms
Formalization Functions
Formalization Functions

Source language (SL): primitive expressions and complex expressions (incl. declarative sentences)

Target language (TL): terms and phrases governed by semantic constraints
Formalization Functions

Source language (SL): primitive expressions and complex expressions (incl. declarative sentences)

Target language (TL): terms and phrases governed by semantic constraints

A *formalization function* F is a (possibly partial) function from a text in a source language to a target language, such that the domain of F is a subset of

\[
\{ << e_1, c_1 >, \ldots, << e_n, c_n >> : n \in \mathbb{N}, \text{ for each } 1 \leq i \leq n, e_i \in SL, c_i \text{ is a context} \}
\]

and the range is the set of phrases of TL.
\(\text{it}_c \text{ is}_c \text{ raining}_c \text{ and}_c \text{ it}_c \text{ is}_c \text{ snowing}_c \)

\[\text{it}_c \text{ is}_c \text{ raining}_c \]

\[\text{it}_c \text{ is}_c \text{ snowing}_c \]

\[\text{it}_c \text{ is}_c \text{ raining}_c \]
Logic and Natural Language

Formalization Constraints (2019)

$p \land q$

p
A formalization constraint for a text in context in a source language SL and a target language TL is a sentence in the metalanguage that somehow constrains or limits the admissible formalization functions of the text (in its context) into TL. Formalization constraints include implicit universal quantification over functions.
A *formalization constraint* for a text in context in a source language SL and a target language TL is a sentence in the metalanguage that somehow constrains or limits the admissible formalization functions of the text (in its context) into TL. Formalization constraints include implicit universal quantification over functions.

Let Π be a set of formalization constraints. A Π-*formalization function* is an *admissible function* by Π, i.e., a formalization function abiding by the constraints in Π.
A *formalization constraint* for a text in context in a source language SL and a target language TL is a sentence in the metalanguage that somehow constrains or limits the admissible formalization functions of the text (in its context) into TL. Formalization constraints include implicit universal quantification over functions.

Let Π be a set of formalization constraints. A Π-formalization function is an *admissible function* by Π, i.e., a formalization function abiding by the constraints in Π.

A set of formalization constraints Π *determines the validity* of an argument in a given SL text if all Π-formalization functions agree on its validity.
$it_{c_1} is_{c_2} raining_{c_3} and_{c_4} it_{c_5} is_{c_6} snowing_{c_7}$

$\frac{\quad\quad}{it_{c_8} is_{c_9} raining_{c_{10}}}$
1. $F(\text{and}_{c4}) = \land$
1. \(F(\text{and}_{c_4}) = \wedge \)
2. \(F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3}) = F(\text{it}_{c_8} \text{is}_{c_9} \text{raining}_{c_{10}}) \)
1. $F(\text{and}_c^4) = \land$
2. $F(\text{it}_c^1 \text{is}_c^2 \text{raining}_c^3) = F(\text{it}_c^8 \text{is}_c^9 \text{raining}_c^{10})$
3. $F(\text{it}_c^1 \text{is}_c^2 \text{raining}_c^3) = p$
4. $F(\text{it}_c^8 \text{is}_c^9 \text{raining}_c^{10}) = p$
1. $F(\text{and}_{c_4}) = \land$
2. $F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3}) = F(\text{it}_{c_8} \text{is}_{c_9} \text{raining}_{c_{10}})$
3. $F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3}) = p$
4. $F(\text{it}_{c_8} \text{is}_{c_9} \text{raining}_{c_{10}}) = p$
5. $F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3} \text{and}_{c_4} \text{it}_{c_5} \text{is}_{c_6} \text{snowing}_{c_7}) =$
 $< F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3}), F(\text{and}_{c_4}), F(\text{it}_{c_5} \text{is}_{c_6} \text{snowing}_{c_7}) >$
6. $F(\text{it}_{c_1} \text{is}_{c_2} \text{raining}_{c_3} \text{and}_{c_4} \text{it}_{c_5} \text{is}_{c_6} \text{snowing}_{c_7}) = p \land q$
\[\text{this}_{c_1} \text{ is}_{c_2} \text{red}_{c_3} \]

\[\text{this}_{c_4} \text{ is}_{c_5} \text{red}_{c_6} \]
1. $F(red_{c_3}) = \text{allRed}$
2. $F(red_{c_6}) = \text{allRed}$
1 \(F(red_{c_3}) = allRed \)
2 \(F(red_{c_6}) = allRed \)
3 \(F(this_{c_1}) = a \)
4 \(F(this_{c_4}) = b \)
allRed(a)

\[\text{allRed}(b)\]
$this_{c_1} is_{c_2} red_{c_3}$

\quad

\quad
allRed(a)

\[\neg allGreen(b) \]
Formalization Meta-Constraints

- *Sentencehood*. If e is a declarative sentence in SL, c a context, and Δ the set of TL semantic constraints then $F(e_c)$ is a sentence w.r.t Δ.
Formalization Meta-Constraints

- **Sentencehood.** If e is a declarative sentence in SL, c a context, and Δ the set of TL semantic constraints then $F(e_c)$ is a sentence w.r.t Δ.
- **Correspondence.** The formalization of an argument should be valid iff the source argument is informally valid.
Formalization Meta-Constraints

The Principle of Univocality:

- (PU) For any expression e in the source language and any contexts c, c',

$$F(e_c) = F(e_{c'})$$
Formalization Meta-Constraints

Equivocation and Co-Reference:

(I) If two occurrences of expressions in the source language denote distinct objects, they should be assigned different target expressions by the formalization function.

(II) If two occurrences of expressions in the source language denote the same object, they should be assigned the same target expression by the formalization function.

(lacona 2018, 71)
Formalization Meta-Constraints

- Assume $e \neq e'$, $c \neq c'$, e_c and e'_c denote distinct objects, then

$$F(e_c) \neq F(e'_c)$$
Formalization Meta-Constraints

• Assume $e = e'$, $c \neq c'$, e_c and e'_c denote distinct objects, then

$$F(e_c) \neq F(e'_c)$$
Formalization Meta-Constraints

- Assume $e \neq e'$, $c \neq c'$, e_c and e'_c denote the same object, then

$$F(e_c) = F(e'_c)$$
Formalization Meta-Constraints

- Assume $e \neq e'$, $c \neq c'$, e_c and e'_c denote the same object, then

$$F(e_c) = F(e'_c)$$

- $I(F(e_c)) = I(F(e'_c))$
Formalization Meta-Constraints

- Assume $e = e'$, $c \neq c'$, e_c and e'_c denote the same object, then

$$F(e_c) = F(e'_c)$$
Formalization Meta-Constraints

- Assume $e = e'$, $c \neq c'$, e_c and $e'_{c'}$ denote the same object, then
 $$F(e_c) = F(e'_{c'})$$

- $I(F(e_c)) = I(F(e'_{c'}))$
Conclusion

• Formalization is part of the interpretation and analysis of a text by a reasoner, interpreter or interlocutor, which ultimately serves for the evaluation of the arguments presented in the text.
Conclusion

• Formalization is part of the interpretation and analysis of a text by a reasoner, interpreter or interlocutor, which ultimately serves for the evaluation of the arguments presented in the text.

• Formalization entails the explicit statement of rules and thereby to commitments on behalf of the one formalizing to the logical norms that may be associated with these rules.
Conclusion

- Formalization is part of the interpretation and analysis of a text by a reasoner, interpreter or interlocutor, which ultimately serves for the evaluation of the arguments presented in the text.

- Formalization entails the explicit statement of rules and thereby to commitments on behalf of the one formalizing to the logical norms that may be associated with these rules.

- The framework of semantic constraints provides a formal backdrop for these commitments to be spelled out. We have seen how various principles regarding formalization can be expressed by semantic or formalization constraints or meta-constraints in this framework.
Thank You!