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Automata and logic: example

I A programming problem: given a natural number in binary,

w ∈ {0, 1}∗, determine if w is congruent to 1 modulo 3.

I Solution 1: a (deterministic) automaton A:

q0 q1 q2

1

0

1

0

0

1

Answer yes iff A accepts w .

I Solution 2: a monadic second order formula ϕ(W0,W1):

∃Q0∃Q1∃Q2(Q0(first) ∧ Q1(last) ∧ Partition(Q0,Q1,Q2)∧

∀x([W0(x) ∧ Q0(x)→ Q0(Sx)] ∧ [W1(x) ∧ Q0(x)→ Q1(Sx)] ∧ . . . ))

Answer yes iff w = (W0,W1) makes ϕ true.
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Regular languages

Regular languages over a finite alphabet Σ are subsets L ⊆ Σω

which are ...

I recognizable by a finite automaton;

or, equivalently,

I definable by a formula of S1S,

the monadic second order logic of one successor.

Büchi 1960
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A model complete theory
A functional language L : Boolean algebra operations (⊥,∪,−),
two unary functions, X and F, and a constant I.

The Boolean algebra P(ω) is an L-structure with:

I Xa := {t ∈ ω | t + 1 ∈ a},
I Fa := {t ∈ ω | ∃t ′ ≥ t : t ′ ∈ a},
I I := {0}.

Theorem
The first order L-theory of P(ω) is model complete.

A theory T ∗ is model complete iff every formula is T ∗-equivalent to an

existential formula.

Ghilardi, G. JSL 2017
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Proving model completeness with automata

L-theory of P(ω)

S1S

Word automaton

“standard translation” Büchi’s Theorem

existential L-descriptionexistential L-description
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An existential L-description of a word automaton

I Let A = (Q,Σ, δ, q0,F ) be a word automaton over a finite

alphabet Σ, i.e., a function δ : Q × Σ→ P(Q), an initial state

q0 ∈ Q and a subset F ⊆ Q of final states.

I Write Σ = {0, . . . , s}, Q = {0, . . . ,m}, q0 = 0.

I A word W : ω → Σ is a partition (W0, . . . ,Ws) of ω; Wj = W−1(j).

Key Observation. The automaton A accepts a word W : ω → Σ

iff P(ω), [wi 7→Wi ] |= α(w0, . . . ,ws), where α is the ∃ L-formula:

∃q0, . . . , qm(“the qi partition ω” ∧
∧

0≤i≤m
0≤j≤s

qi ∩ wj ⊆
⋃

k∈δ(i ,j)

Xqk


∧ I ⊆ q0 ∧ F

(⋃
i∈F qi

)
= >).
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The theory is a model companion

A theory T ∗ is a model companion of a theory T iff T ∗ is model

complete, and T and T ∗ have the same universal consequences.

Theorem
The L-theory of P(ω) is the model companion of the theory of

L-structures axiomatized by the following universal sentences:

I equations for Boolean algebras;

I X is a Boolean homomorphism;

I Fa is the least fixed point of x 7→ a ∨ Xx ;

I I is an atom which is below Fa for any a 6= ⊥, and XI = ⊥.

Ghilardi, G. JSL 2017
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Binary trees
The full binary tree is 2∗, finite sequences of 0’s and 1’s.

To obtain a model complete theory, more complex operators are

needed to express acceptance by a tree automaton.

A functional language L2 : Boolean algebra operations (⊥,∪,−),
constant I, unary operations X0, X1, binary operations EU and AF.

The Boolean algebra P(2∗) is an L2-structure with

I I := {ε},

I Xia := {t ∈ ω | t · i ∈ a} for i = 0, 1,

I t ∈ EU(a, b) iff there Exists a path t = t0, . . . , tn such that, for

i < n, ti ∈ a, and (Until) tn ∈ b,

I t ∈ AF(a,−b) iff for All infinite paths t = t0, t1, . . . there is a

(Future) ti ∈ a, provided that tj ∈ b for infinitely many j .
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Model companion for binary trees

Theorem
The L2-theory of P(2∗) is model complete, and is in fact the model

companion of an L2-theory with a finite universal axiomatization.

Ghilardi, G. LICS 2016

I Proving model completeness crucially uses tree automata

originally developed for deciding S2S (Rabin 1969).

I We obtain an analogous result for ‘bisimulation-invariant’

MSO, i.e., the modal µ-calculus (Janin-Walukiewicz 1996).
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Ongoing work and questions

I Ongoing work: extending these results to general trees; this

requires an infinite language that can count successors.

I Where do L-structures and L2-structures fit in model theory?

I Context: model companions also exist for Heyting algebras and

certain modal algebras; but the methods are different.

I Can automata methods be useful for proving the model

completeness of other theories (especially if they have a

‘computation’ flavor)?
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