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Some Stage Setting

As defined in Jónsson and Tarski’s seminal Boolean Algebras with Operators, f1, f2 (unary operations
on a Boolean algebra) are conjugated when:

a ∧ f1b = ⊥ ⇐⇒ b ∧ f2a = ⊥

This can be extended naturally to binary operations g1, g2, g3:

a ∧ g1(b, c) = ⊥ ⇐⇒ b ∧ g2(c, a) = ⊥ ⇐⇒ c ∧ g3(a, b) = ⊥

As has been studied, for instance by Jónsson and Tsinakis (1993), in the Boolean setting, relations of
conjugation and residuation are, in some sense, equivalent.
Recall that unary h is residuated by h1, and binary i by i1, i2 when:

ha ≤ b ⇐⇒ a ≤ h1b
i(a, b) ≤ c ⇐⇒ a ≤ i1(b, c) ⇐⇒ b ≤ i2(c, a)

If a unary f is residuated, by f r , then a conjugate is definable as f ca = ¬f r¬a – and similarly,
f ra = ¬f c¬a. This is true considering higher-arity operations
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Some More Stage Setting

The logics discussed in this talk are presented as binary assertional systems or, if you prefer,
FMLA-FMLA sequent systems – where the basic objects are pairs of formulae presented A ` B. All
logics discussed here extend meet-semilattice logic (MSL), characterisable by the following axioms and
rules:

A ` A

A∧ B ` A, A∧ B ` B

A ` B B ` C
A ` C

A ` B A ` C
A ` B ∧ C

Further, for the most part, we discuss logics extending distributive lattice logic (DLL), for which add
the following axioms and rule:

A ` A∨ B, B ` A∨ B

A∧ (B ∨ C ) ` (A∧ B) ∨ (A∧ C )

A ` C B ` C
A∨ B ` C
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Even More Stage Setting

In either of these settings, extended by ⊥ (with the additional axiom ⊥ ` A), conjugation between two
unary operators ♦1,♦2, or three binary operators ◦1, ◦2, ◦3 amounts to the following rules:

A∧♦1B ` ⊥
B ∧♦2A ` ⊥

A∧ (B ◦1 C ) ` ⊥
B ∧ (C ◦2 A) ` ⊥
C ∧ (A ◦3 B) ` ⊥

Whereas residuation, for which we’ll reserve �i as the residual for ♦i (1 ≤ i ≤ 2), and ←j ,→j as
residuals for ◦j (1 ≤ j ≤ 3) is characterised by the following rules:

♦iA ` B

A ` �iB

A ◦j B ` C

A ` B →j C

B ` C ←j A
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Aim of the Talk

The aim of the talk is to investigate the behaviour of conjugates (and residuals) in relational semantics
for positive logics (by which we mean logics lacking Boolean negation and falsum).

The system with Lambek-style connectives (including conjugates) and Boolean negation has been
investigated by Mikulás (1996), but the positive fragment appears not to have been studied, and
presents some interesting difficulties.

Noteworthy Consequences

Definability

Canonicity

Adequate Axiomatisations

To begin, I’ll briefly present the simple case of bimodal (temporal) positive logic – using tools
developed by Dunn (1995).

Then I’ll move to Routley-Meyer style semantics for logics with multiple families of Lambek-style
connectives. First I’ll discuss (briefly) why conjugates are interesting in that particular setting. Then
we obtain some preliminary results leaving (frustratingly) open the question of finding an adequate
axiomatisation for the full system.
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Languages

LM is the language generated by a set of propositional variables P and connectives
∧,∨,♦1,♦2,�1,�2 of arities 2, 2, 1, 1, 1, 1, respectively.

LS generated by P and connectives ∧,∨, {◦i}1≤i≤3, {→i}1≤i≤3, {←i}1≤i≤3 all of arity 2.

LS [∧,◦i ] will be the subset of LS in the connectives ∧ and {◦i} (this is related to the Strictly Positive

Modal logics studied by Kikot et. al. (2019)) – and LS [∧,∨,◦i ] extends that by ∨ (and so on).
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Frame Semantics for a Basic Temporal Logic

Definition

A frame F is a triple 〈W ,S1,S2〉 s.t. W 6= ∅,S1,S2 ⊆W 2. Furthermore F is 2-cyclical whenever
S1αβ ⇐⇒ S2βα. A model M on F is a VM : P −→ ℘(W ), extended to J·KM : LM −→ ℘(W ) where:

JpKM = VM (p)

JA∧ BKM = JAKM ∩ JBKM

JA∨ BKM = JAKM ∪ JBKM

J♦iAKM = {α : ∃β(Si βα & β ∈ JBKM )}
J�iAKM = {α : ∀β(Siαβ⇒ β ∈ JAKM )}

A �M B ⇐⇒ JAKM ⊆ JBKM

A �F B ⇐⇒ A �M B for all M on F
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Definability

While we (apparently) don’t have the vocabulary to express conjugation between diamonds in the
object language LM, we can naturally express this at the level of models (or, if you prefer, at the level
of the (full) complex algebra of the frame):

JA∧♦1BK = ∅ ⇐⇒ J♦2A∧ BK = ∅

Furthermore, if F has a 2-cyclical frame, then the above property is satisfied for any M on F .

Proposition

F is 2-cyclical iff A∧♦iB �F ♦i (♦jA∧ B) (i 6= j ∈ {1, 2})
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An Adequate Axiomatisation

To the basic system of DLL, the following additions result in TL (as before i 6= j ∈ {1, 2}):

A∧♦iA ` ♦i (♦jA∧ B)

�i (A∨ B) ` �iA∨♦jB

♦iA ` B

A ` �iB

A ` B
�iA ` �iB

A ` B
♦iA ` ♦iB



An Adequate Axiomatisation of TL

Theorem

A ` B in TL ⇐⇒ for every 2-cyclical F , A �F B

The proof proceeds by the style of Dunn (1995). That is, a canonical model 〈W c ,Sc
1 ,Sc

2 ,V c 〉 is
defined as usual, but that

Sc
i αβ ⇐⇒ both (1) A ∈ β⇒ ♦jA ∈ α and (2) �iA ∈ α⇒ A ∈ β

For those interested, some consequences of the proof system sketched above which are used in the
proof are as follows:

♦i�iA ` A, A ` �i♦iA

�i (A∧ B) a` �iA∧�iB

♦i (A∨ B) a` ♦iA∨♦iB

♦iA∧�jB ` ♦i (A∧ B)

The argument is standard.
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Conjugated Substructural Logics

Now to the more interesting setting – LS .

Definition

F = 〈W , {Ri}1≤i≤3〉 is a frame when W 6= ∅,Ri ⊆W 3. Furthermore, F is cyclical when
R1βγα ⇐⇒ R2γαβ ⇐⇒ R3αβγ. A model M adds V : P −→ ℘(W ), extended to J·K : L −→ ℘(W )
as follows:

Prop. variables, ∧,∨ as before

JB ◦i CKM = {α : ∃β, γ(Ri βγα & β ∈ JBKM & γ ∈ JCKM )}
JB →i CKM = {α : ∀β, γ(Riαβγ & β ∈ JBKM .⇒ γ ∈ JCKM )}
JC ←i BKM = {α : ∀β, γ(Ri βαγ & β ∈ JBKM .⇒ γ ∈ JCKM )}

A �M B iff JAKM ⊆ JBKM

A �F B iff ∀M on F , A �M B



Model Definability

Proposition

A∧ (B ◦i C ) �F (B ∧ (C ◦i+1 A)) ◦i (C ∧ (A ◦i−1 B)) ⇐⇒ F is cyclical.

Also, when a frame is cyclical, we have:

JA∧ (B ◦i C )K = ∅ ⇐⇒ JB ∧ (C ◦i+1 A)K = ∅ ⇐⇒ JC ∧ (A ◦i−1 B)K = ∅
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Why is Conjugation Interesting Here?

According to one natural reading of the ternary relation of Routley-Meyer style semantics for relevant
and substructural logics, it is a kind of dynamic update. On a dynamic reading of R, the usual truth
conditions for →, ◦ can be understood as saying that:

(1) α supports A→ B whenever γ is a possible result of applying channel α to signal β, and β satisfies
A only if γ satisfies B

(2) γ supports A ◦ B if γ is the result of applying some A-supporting channel α to some B-supporting
signal β

This reading naturally leaves room for other operators conjugating fusion. Let us set {←, ◦,→} as
{←1, ◦1,→1}, and consider the truth conditions for their conjugates:

α supports A ◦2 B whenever it, as channel, can be applied to some A-supporting state, to obtain a
B-supporting state.

α supports A ◦3 B whenever it is a signal for which some A-supporting state takes to a B-supporting
state.

It seems a natural expressive extension of the language to provide this extra insight into the process
being modeled by R.
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A More Specific Motivation

Further on the dynamic reading, in a language including >, there is a natural ‘box’ operator definable:

J> →1 AK = {α : ∀γ(∃β(R1αβγ)⇒ γ ∈ JAK)}

Using techniques developed by Bimbó and Dunn (2008), an iterated version of this box is definable, so
one can build a dynamic modal logic from the ternary relation semantics. However, the most natural
‘diamond’ for this operation, involves the conjugated ◦2 – as R2βγα ⇐⇒ R1αβγ:

J> ◦2 AK = {α : ∃γ(∃β(R1αβγ) & γ ∈ JAK)}

It would be nice to develop a deeper understanding of the dynamic logic induced by the ternary
relation semantics, and this motivates enriching the language with conjugation – one which doesn’t
require the (overly?) powerful expressive resources provided by Boolean negation.

A more technical consideration: due to a result of Kurucz et al (1995), the full (associative) Lambek
calculus with Boolean negation is undecidable, so one might hope that a more feasible system is
available without negation.
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An Attempt at Axiomatisation

Following the lead of the simple temporal case, it’s reasonable to think that we can obtain the needed
system by adding to DLL the following axioms and rules (where 1 ≤ i ≤ 3 and +,− are ‘mod 2’):

A∧ (B ◦i C ) ` (B ∧ (C ◦i+1 A)) ◦i (C ∧ (A ◦i−1 B))

A→i (B ∨ C ) ` (A→i B) ∨ (A ◦i+1 C )

(B ∨ C )←i A ` (B ←i A) ∨ (C ◦i−1 A)

A ◦i B ` C

A ` B →i C

B ` C ←i A

A ` B
C ◦i A ` C ◦i B

A ` B
A ◦i C ` B ◦i C

Call the full system LC and let LC[∧,◦i ] be that including only rules and axioms mentioning formulae in

LS [∧,◦i ].



Attempted Axiomatisation

It is easy enough to show soundness, as usual. But the usual completeness result is proving evasive. I’ll
sketch some stumbling blocks which seem to get in the way, but start with some preliminary results.



Completeness of LC[∧,◦i ]

For LC[∧,◦i ], a completeness proof can be given in the style of Došen (1992) (as we may concern

ourselves just with principal theories/filters), but just as in the modal case, we need to define the
canonical relation with some care. Letting W C = L[∧,◦i ], V

C (p) = {A : A ` p}, if we take the
obvious route:

RC
i BCA ⇐⇒ A ` B ◦i C

We cannot prove that RC
1 BCA ⇐⇒ RC

2 CAB ⇐⇒ RC
3 ABC – if this were the case, the following rule

would be valid:

A ` B ◦1 C

B ` C ◦2 A

C ` A ◦3 B

and this rule would permit the following disastrous derivation:

C ∧ (A ◦1 B) ` A ◦1 B

A ` B ◦2 (C ∧ (A ◦1 B))

A ` B ◦2 C

(and, just to be clear, for a, b, c ∈ P there are models M on cyclical frames F where a 2M b ◦i c –
constructing one such is left as an exercise for the interesting listener)
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constructing one such is left as an exercise for the interesting listener)
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Proposition

A `LC[∧,◦i ]
B ⇐⇒ A �F B for all cyclical F

Instead, define the canonical accessibility relations, following Dunn (1995), as:

Rc
i BCA iff (1) A ` B ◦i C and

(2) B ` C ◦i+1 A and
(3) C ` A ◦i−1 B

. . . with this it is immediate that 〈W c , {Rc
i }〉 is cyclical, and the truth lemma for ◦i primarily relies on

the axiom defining cyclicality, for note that if B ◦1 C ∈ A then:

A ` A∧ (B ◦1 C ) ` (B ∧ (C ◦2 A)) ◦1 (C ∧ (A ◦3 B)) (1)

From this, between monotonicity and the cyclicality axiom, the following result:

B ∧ (C ◦2 A) ` (C ∧ (A ◦3 B)) ◦2 A (2)

C ∧ (A ◦3 B) ` A ◦3 (B ∧ (C ◦2 A)) (3)

Thus Rc
1 (B ∧ (C ◦2 A))(C ∧ (A ◦3 B))A, B ∧ (C ◦2 A) ` B, and C ∧ (A ◦3 B) ` C .
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But it is not generally the case that:

Rc
i AB(A ◦i B)

As neither of the following hold.

A ` B ◦i+1 (A ◦i B)
B ` (A ◦i B) ◦i−1 A

So, in a similar construction for the full LS , we don’t generally have:

Rc
i (A→i B)AB

Rc
i A(B ←i A)B

which throws a wrench in extending this argument to LC[∧,◦i ,→i ,←i ]. (Though one can extend the

desired result to LC[∧,∨,◦i ] by a Pair Extension argument)
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Moving to Full LC

The most natural way to proceed is by setting W c to be the set of all prime LC-theories,
V c (p) = {α ∈W c : p ∈ α}, and:

Rc
i βγα iff (1) D ∈ β & E ∈ γ.⇒ D ◦i E ∈ α and

(2) D ∈ γ & E ∈ α.⇒ D ◦i+1 E ∈ β and
(3) D ∈ α & E ∈ β.⇒ D ◦i−1 E ∈ γ

Defining Rc
1 ,Rc

2 , and Rc
3 separately (in the usual fashion), as in the situation with LC[∧,◦i ], does not

allow the proof of circularity (so, cyclicality is not canonical w.r.t. LC – just as it is not w.r.t.
LC[∧,◦i ]). But using the above definition seems to put one in problems with the Truth Lemma.

It can be shown (in a more or less standard way) that:

B ◦i C ∈ α ⇐⇒ ∃β, γ ∈W c (Rc
i βγα & β ∈ B & γ ∈ C )

But there seem to be difficulties with applying the Pair Extension lemma to keep out the bad guys – as
is needed to employ the usual arguments for:

∀β, γ ∈W c ((Rc
i αβγ & B ∈ β)⇒ C ∈ γ)⇒ B →i C ∈ α
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It seems that the proposed additional axioms may not guarantee that when β′, γ′ (theories) are defined
so that Rc

i αβ′γ′ (for a version of this relation the relata of which may be theories), B ∈ β′, C /∈ γ′,
these can be extended to prime β, γ satisfying the same properties.

The usual technique involves fixing γ first, then constructing β – but we seem to need to construct
them in lock-step in order to ensure that all three conditions are satisfied, and we haven’t found a
construction that does everything required.



The obvious candidate sequents (which we thought of) for allowing the proof of the key lemmas are
unsound. Nor have we found a counterexample to completeness. So:

Open Problem

Axiomatise the logic of cyclical frames in the full language LS .

With that posed, I’ll end by turning to some lingering considerations concerning extending the well
known relevant substructural logics with conjugates.
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Expressive Power

There are a number of interesting correspondences in the extended language. For instance, the
following is noteworthy:

A ◦2 B ` B ◦2 A corresponds to R1αβγ⇒ R1αγβ

This is a postulate characteristic, in the usual setting, of adding Boolean negation to some
substructural logic (for instance in KR (corrupted R) studied by Urquhart (1984), where the ternary
relation fully permutes).

In the usual setting, this results from the interpretation of negation in terms of the star ∗ : W −→W :

J¬AK = {α : α∗ ∈ JAK}

along with the star condition corresponding to contraposition: Rαβγ⇒ Rαγ∗β∗ and the Boolean
condition α∗ = α. I don’t know of any natural positive formulae which correspond to these conditions
without invoking conjugates.
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Simplified Semantics

The elements which provide for logics with theorems of the form of individual formulae, rather than
sequents, on this semantics are a partial order v ⊆W 2 and a set of normal worlds N ⊆W – these are
related such that α v β ⇐⇒ ∃γ ∈ N(R1γαβ).

To account for the order, we now have to define models a bit differently – in particular,
℘(W )↑ = {X ⊆W : α v β & α ∈ X .⇒ β ∈ X}

and extend the valuation clauses for complex formulae accordingly.



Simplified Semantics

The elements which provide for logics with theorems of the form of individual formulae, rather than
sequents, on this semantics are a partial order v ⊆W 2 and a set of normal worlds N ⊆W – these are
related such that α v β ⇐⇒ ∃γ ∈ N(R1γαβ).

To account for the order, we now have to define models a bit differently – in particular,
℘(W )↑ = {X ⊆W : α v β & α ∈ X .⇒ β ∈ X}

and extend the valuation clauses for complex formulae accordingly.



Simplified Semantics

To show that a model can be so extended to cover the full language we need the following tonicity
conditions on Ri :

If α′ v α, β′ v β, and γ v γ′, then Riαβγ implies Riα
′β′γ′.

These conditions ensure that →i ,←i , and ◦i are indeed operations on ℘(W )↑.

Cyclicality is what tells us that R1,R2,R3 are offering three different ‘perspectives’ on one and the
same R – if cyclicality holds, then this R will need to have all of these tonicity properties at every point
in the relation. That is, it will have to be monotone and antitone in each position – R will be tonally
overloaded.
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Simplified Semantics

If we define α v β iff ∃γ ∈ N(R1γαβ) and we assume these tonicity conditions then we obtain the
result that α v β⇒ α = β.

So all models with conjugates and residuals in which the usual relationship between the ternary
relation(s) and the set of normal worlds will satisfy the condition:

If α ∈ N, R1αβγ iff β = γ

This is the characteristic condition of Priest and Sylvan’s (1992) Simplified Semantics for Relevant
logics – there, the above is the only frame condition put on R, and otherwise the frame is flat (ordered
only by =). This is a complete semantics for B, and can be extended, as has been shown by Restall
(1993) and Roy (2009) to cover other logics in the area.

So the extension of the logical vocabulary by conjugates and residuals provides (potentially) another
way to motivate the simplified semantic framework.



Simplified Semantics

If we define α v β iff ∃γ ∈ N(R1γαβ) and we assume these tonicity conditions then we obtain the
result that α v β⇒ α = β.

So all models with conjugates and residuals in which the usual relationship between the ternary
relation(s) and the set of normal worlds will satisfy the condition:

If α ∈ N, R1αβγ iff β = γ

This is the characteristic condition of Priest and Sylvan’s (1992) Simplified Semantics for Relevant
logics – there, the above is the only frame condition put on R, and otherwise the frame is flat (ordered
only by =). This is a complete semantics for B, and can be extended, as has been shown by Restall
(1993) and Roy (2009) to cover other logics in the area.

So the extension of the logical vocabulary by conjugates and residuals provides (potentially) another
way to motivate the simplified semantic framework.



References
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