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Overview

I Entailment Relation is a syntactic framework proposed in
(Scott 1974 [5]).

I It is used in [5] as a proof theory for many-valued logic.
I We shall point out a flaw in Scott’s soundness proof for this.
I We shall offer a remedy for this, but observe this in turn

affects Scott’s completeness proof.
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Entailment Relation

I (Scott 1974 [5]) proposed entailment relation as a
generalisation of consequence relation of (Tarski 1930 [6]).

I An entailment relation ` is a collection of pairs of (finite)
subsets, w.r.t. a set S : i.e. `⊆ Pow(S )× Pow(S ).

I Let A ,B := A ∪B; A ,B := A ∪ {B} and
A ` B := (A ,B) ∈ `.

I One may understand commas on the left (right) hand side
of ` as conjunctions (disjunctions): e.g. A ,A,B ` C,D,B
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Entailment Relation

Entailment relation satisfies the next three rules.
I (R) A ` B if A ∩B 6= ∅ reflexitivity

I (M) A ` B
A ,A ′ ` B,B′ monotonicity

I (T) A ` B,C A ,B ` C

A ` C
transitivity
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Examples of Entailment Relation

I Entailment relation allows a syntactic treatment of
mathematical objects, by way of formal derivation.

I (Cederquist and Coquand 2000 [1]) initiated the application
of entailment relation in algebra, as a tool to represent ideal
objects, whose existence is tied with the Axiom of Choice.

Example (Negri et al. 2004 [2])
Let S = X × X . Then the entailment relation of total quasi order
is generated by axioms ` (a,a); (a,b), (b, c) ` (a, c) and
` (a,b), (b,a).

Example (Rinaldi et al. 2018 [4])
Let S be a commutative ring. Then the entailment relation of
prime filter on S is generated by axioms ` 1; a,b ` ab; ab ` a;
a + b ` a,b and 0 ` .
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Many Valuations

Scott reinterpreted many-valued logic of Łukasiewicz by
replacing many values with many valuations:
I Let S be a set closed under connectives ∧,∨,→.
I Let I = [0,e) be a half-open interval of an ordered abelian

group.
I We shall consider a family of valuations V = {vi : i ∈ I}

where vi : S → {t, f}.
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I The truth value for connectives are defined as follows.

(and) vi(A ∧ B) = t⇔ vi(A) = t and vi(B) = t.
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(if) vi(A→ B) = t⇔ whenever i + j ≤ k and vj(A) =

t, then vk (B) = t.

I Furthermore, vi satisfies the conditions:

(con) if i ≤ j and vi(A) = t, then vj(A) = t.
(min) if vi(A) = t holds for some i , then there is a minimal m ∈ I

such that vm(A) = t.
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vi B for all i ∈ I.
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Entailment Relation and Many Valuations

I Let A→ B := {A→ B : B ∈ B} and C → A := {C → A :
C ∈ C }.

I The following rules define the entailment relation `.
(a double line indicates bi-directional rule.)

(∧)
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(→3) A→ (B → C) ` B → (A→ C)

` is claimed to be sound and complete with `V , i.e.
A ` B ⇔ A `V B.
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I We show a derivable rule, A ` B → C(Ex)
B ` A→ C
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Problem with the Soundness

I (Scott 1974 [5]) claims the rules are sound, but does not
show the case:

B → A ` C → A(→2)
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[C 6= ∅]

I Using (→2), we can prove (A→ B)→ B ` A,B.
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Problem with the Soundness

I We now show (A→ B)→ B 0V A,B.
I Let I = [0,∞) and V = {vi : i ∈ I} s.t.

I vi(A) = t iff i ≥ 1.
I vi(B) = f for all i .

I V satisfies (con) and (min).
I Now vi(A→ B) = f for all i ; consequently

vi((A→ B)→ B) = t for all i .
I However v0(A) = v0(B) = f, so (A→ B)→ B 1v0 A,B.
I Therefore the entailment relation is not sound with `V .
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Discussion

I The problem is caused by B’s never being true.
I For soundness we need to add the condition:

(min’) For any A there is a minimal i s.t. vi(A) = t.
I In fact, (Urquhart 2001 [8]) already considers a similar

semantics for Lω, but with (min’) assumed.
(Lω corresponds to an instance of Scott’s system where S
is a set of formulas.)
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Discussion

I (min’) causes a problem for Scott’s completeness proof.
I When S is a set of formulas, the completeness w.r.t. Lω is

shown by Urquhart.
I For general S , in the proof Scott defines vi(A) = t iff

ε(A) ≤ i .
I But this ε(A) need not be finite, in which case (min’) is

violated.

Hence, Scott’s system still requires a completeness proof.
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