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Bernoulli disjointness
Applications

Let G be an infinite discrete group. A G -flow is a compact space
X equipped with a continuous action a : G × X → X . We often
suppress a and write g · x or gx for a(g , x).

If X and Y are G -flows, a G -map is a continuous map φ : X → Y
which respects the G -actions. If φ is surjective, we call Y a factor
of X .

The product of X and Y is the space X × Y equipped with the
action g · (x , y) = (gx , gy). Both projections are G -maps.

A subflow of X is any non-empty, closed, G -invariant Y ⊆ X . We
say X is minimal if the only subflow of X is X itself. Equivalently,
X is minimal if every orbit is dense. By Zorn’s lemma, every flow
contains a minimal subflow.
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Definition

Let X and Y be G -flows. We say that X and Y are disjoint if
whenever Z ⊆ X × Y is a subflow such that πX [Z ] = X and
πY [Z ] = Y , we have Z = X × Y . This is written X ⊥ Y .

If X and Y have a common factor Z , then X 6⊥ Y .

If X ⊥ Y and X ′,Y ′ are factors of X ,Y resp., then X ′ ⊥ Y ′.

If X ⊥ Y , then at least one of X or Y is minimal. If both X and
Y are minimal, then X ⊥ Y iff X × Y is minimal.

Example: G = Z, X is irrational rotation by α, Y is irrational
rotation by β with α/β irrational.
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Definition

The Bernoulli shift on finite (or compact) alphabet A is the G -flow
whose underlying space is AG and whose action is given by

g · x(h) = x(hg)

Question: which minimal flows are disjoint from AG?

Question: for which minimal flows X is there an (essentially free)
minimal flow Y with X ⊥ Y ?

Furstenberg (1969): for G = Z, we have X ⊥ AZ for every minimal
flow X .
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Equivalent ways to think about Bernoulli disjointness:

Definition

Let D ⊆ G be finite and symmetric.

1 We say that S ,T ⊆ G are D-apart if DS ∩ DT = ∅.
2 We say that S ⊆ G is D-spaced if for any g 6= h ∈ S , we have

Dg ∩ Dh = ∅.

Proposition

Let X be a minimal G -flow. TFAE:

1 X ⊥ 2G (BDJ)

2 For any finite symmetric D ⊆ G , there is a D-spaced set
S ⊆ G so that for any x ∈ X , Sx ⊆ X is dense (SDOP).

3 For any finite symmetric D ⊆ G and any U ⊆ X , there is a
D-spaced set S ⊆ G so that S−1U = X (SCP).
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Let us say that the group G has BDJ if every minimal G -flow X
satisfies BDJ (equivalently SDOP or SCP).

Equivalently, recall that every group G admits a universal minimal
flow M(G ) which is unique up to isomorphism. So G has BDJ
exactly when M(G ) ⊥ 2G .

Theorem (Glasner-Tsankov-Weiss-Z.)

Let G be an infinite discrete group. Then G has BDJ.
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Step 1 - A G -flow X is called essentially free if for any
g ∈ G \ {1G}, the set {x ∈ X : gx = x} is nowhere dense. To
show that G has BDJ, it suffices to show that X ⊥ 2G for some
essentially free minimal flow X .

Step 2 - For a fixed essentially free flow X , saying that X has the
SCP is suitably first order. So it suffices to prove that every
countable group has BDJ.
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Step 3 - A group H is called maxap if there is an injective
homomorphism of H into a compact group.

Examples of maxap groups are abelian groups and residually finite
groups.

We show that minimal “suitably equicontinuous” flows have BDJ.
So G has BDJ whenever G admits an infinite, normal, maxap
subgroup H.
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Step 4 - A G -flow X is called proximal if for every x , y ∈ X , there
is a net gi ∈ G and some z ∈ X with (gix , giy)→ (z , z). We show
that every minimal proximal flow has the BDJ.

Question: which countable infinite groups G admit essentially free
minimal proximal flows?

Easy to show that if g ∈ G has finite conjugacy class (i.e.
{h−1gh : h ∈ G} is finite), then g acts trivially in any proximal
flow.

Recently, Frisch, Tamuz, and Vahidi-Ferdowsi have shown that
every countably ICC group acts faithfully on some minimal
proximal flow. They ask about getting free minimal proximal flows.
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Theorem (Glasner-Tsankov-Weiss-Z.)

Let G be a countable ICC group. Then G acts freely on some
minimal proximal flow.

Idea: getting essentially free is actually quite easy given what
Frisch, Tamuz, and Vahidi-Ferdowsi do. Then one can use a highly
proximal extension to turn essentially free into free while preserving
both minimality and proximality.
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Step 5 - If G is an infinite group, H = G/F for F E G some finite
normal subgroup, and H has the BDJ, then so does G .

Remark - Strangely enough, the only way we know how to prove
this step is to work directly with M(G ) and M(H).
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Step 6 - Putting everything together. Let G be a countably infinite
group. Let F ⊆ G denote the FC center of G , i.e. those g ∈ G
with finite conjugacy class. Note that F is a characteristic
subgroup of G .

If F is finite, then G/F is ICC, and we are done using steps 4 and
5. So assume that F is infinite.

Let Z ⊆ F denote the center of F . Note that Z is a characteristic
subgroup of F , so in particular Z E G . If Z is infinite, then Z is an
infinite abelian normal subgroup of G , so we are done by step 3.

If Z is finite, consider F/Z E G/Z . The group F/Z is an infinite,
residually finite, normal subgroup, so we are done by steps 3 and 5.
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Recently, Anton Bernshteyn has found a ”straightforward” proof of
BDJ for every discrete group G .

Definition

A G -flow X has the trapping property if for every non-empty open
U, there is n < ω so that for any distinct g0, ..., gn−1 ∈ G , the set
g0U ∪ · · · ∪ gn−1U contains an orbit.

Bernshteyn shows that every flow with the trapping property is
disjoint from every minimal flow. Then he uses the Lovász Local
Lemma (LLL) to show that 2G has the trapping property.

Andy Zucker Bernoulli disjointness



Bernoulli disjointness
Applications

Recently, Anton Bernshteyn has found a ”straightforward” proof of
BDJ for every discrete group G .

Definition

A G -flow X has the trapping property if for every non-empty open
U, there is n < ω so that for any distinct g0, ..., gn−1 ∈ G , the set
g0U ∪ · · · ∪ gn−1U contains an orbit.

Bernshteyn shows that every flow with the trapping property is
disjoint from every minimal flow. Then he uses the Lovász Local
Lemma (LLL) to show that 2G has the trapping property.

Andy Zucker Bernoulli disjointness



Bernoulli disjointness
Applications

Recently, Anton Bernshteyn has found a ”straightforward” proof of
BDJ for every discrete group G .

Definition

A G -flow X has the trapping property if for every non-empty open
U, there is n < ω so that for any distinct g0, ..., gn−1 ∈ G , the set
g0U ∪ · · · ∪ gn−1U contains an orbit.

Bernshteyn shows that every flow with the trapping property is
disjoint from every minimal flow. Then he uses the Lovász Local
Lemma (LLL) to show that 2G has the trapping property.
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The work of Frisch, Tamuz, and Vahidi-Ferdowsi makes use of the
space of strongly irreducible subshifts of AG . A subshift X ⊆ AG is
strongly irreducible if there is a finite symmetric D ⊆ G so that for
any x0, x1 ∈ X and any sets S0,S1 ⊆ G which are D-apart, there is
y ∈ X with y |Si = xi |Si .

Let S ⊆ K (AG ) be the closure of the non-trivial strongly irreducible
shifts. This space is particularly well suited to Baire category
arguments. FTVF show that the minimal flows are dense Gδ in S.

One can show that for any BDJ group, every minimal flow is
disjoint from every strongly irreducible subshift. Using the fact
that disjointness from a given metrizable flow is a Gδ condition, we
obtain:
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Theorem

Let X be a minimal metrizable G -flow. Then there is a free
minimal flow Y with X ⊥ Y .

By combining this with Mycielski’s theorem, we obtain:

Theorem (Glasner-Tsankov-Weiss-Z.)

Let G be a countably infinite group. Then there is a family
{Xi : i < c} of free minimal flows such that

∏
i<c Xi is minimal.
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As a corollary, we can compute the underlying space of M(G ) for
any countably infinite group G .

Balcar and B laszczyk have shown that M(G ) ∼= Gl(2πw(M(G))).
Here Gl is the Gleason cover of a compact space, the Stone space
of the regular open algebra, and the π-weight of a space is the
least size of a downward-cofinal collection of open sets.

As G is countable πw(M(G )) ≤ c. To show πw(M(G )) ≥ c, it
suffices to find some minimal flow attaining this value. Balcar and
B laszczyk do this for Z, and Turek does this for abelian groups.
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Theorem (Glasner-Tsankov-Weiss-Z.)

Let G be any countably infinite group. Then as a topological
space, we have M(G ) ∼= Gl(2c).

This is simply because for the minimal flow X =
∏

i<c Xi , we have
πw(X ) = c.
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For each G -flow X , the enveloping semigroup of X is the set
E (X ) := clpw{x → gx : g ∈ G} ⊆ XX . Under composition, E (X )
becomes a compact right topological semigroup.

Let βG denote the space of ultrafilters on G . This is also a
compact right-topological semigroup. Furthermore, we have a
continuous map φX : βG → E (X ), where for p ∈ βG , we set
φX (p)(x) = limg→p gx .

Question (often attributed to Ellis): is φM(G) : βG → E (M(G )) an
isomorphism?

Glasner and Weiss (1983): no for G = Z, drawing heavily from
earlier work of Furstenberg (1969).
Conjecture of Pestov (1998): no for any non-precompact
topological group G .
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Theorem (Glasner-Tsankov-Weiss-Z.)

Let G be any infinite discrete group. Then
φM(G) : βG → E (M(G )) is not an isomorphism.
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Thanks!
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