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Why singular cardinals?

Theorem (Easton)

The continuum function k — 2% on regular cardinals is
constrained only by:

» A<k = 2} < 2" (monotonicity)
» cf(2%) > Kk (Kénig's Theorem).

— The question was: can we extend this to singular cardinals?
— No!
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Singulars of countable versus uncountable cofinality

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable
cofinality.

— The crux is that we can use Fodor’'s Lemma.

Theorem (Magidor)

Relative to a supercompact cardinal, it is consistent that GCH
holds below R, but 2%« > Net1-

Theorem (Shelah)

If X, is a strong limit (in particular if GCH holds below X,,) then
2N < R,
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Singularizing cardinals
Theorem (Prikry)

If Kk is measurable in some ground model V/, then there is a k*-c.c.
forcing P such that in V[P, k is a singular strong limit cardinal of
countable cofinality.

Theorem (Silver)

If k is supercompact, then it is consistent that there is a model
where K is measurable and 2% > k.

Silver + Prikry == Con(k is a singular strong limit A 2° > k™)

Theorem (Gitik)

If there is a model of set theory in which a cardinal k is a singular
strong limit and 2% > k, then this implies the consistency of large
cardinals. This can be done so that the large cardinal assumption
is optimal.
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But what actually happens when we singularize cardinals?
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Defining squares

Definition
We say that (C, | a € lim(k™)) is a O, r-sequence if for all limit
a <kt

1. each C € C, is a club subset of a with ot(C) < k;

2. for every C € Cq, if f € lim(C), then CN B € Cg;

3. 1< @l < A

» The U, \-sequence cannot have a thread, i.e. there is no club
D C k1 such that Va € limD, DN a € C,.

» Note that [, 1 is just the original Jensen's L., and [, , is
the weak square [, Also, ZFC proves [, 2.

» When we speak of a “square sequence” we are often declining
to specify A for [, .
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Uses of squares

Squares help us think about different models of set theory.

» L =0, for all k.

» [, ) serves as a “yardstick” comparing a given model to L,
where a smaller A means a stronger resemblance to L.

» Square sequences can be used to show that large cardinals are
necessary for certain results.

Squares also have specific combinatorial entailments.

» GCH + O, implies that there is a K™-Suslin tree.
» ¥ is equivalent to a special xT-Aronszajn tree.

» If 4 < k are infinite and O, holds, then (kT, k) — (u™, 1)
fails.
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Consequences of singularizing cardinals

Theorem (DZamonja-Shelah and Gitik)
Suppose there are models ON C V C W and a cardinal k such
that:

» V |= “k is inaccessible”,
> (H+)V — (RJr)W,

» and (cf k)W
Then Oy, holds in W.

Fact (Gitik-Sharon)

Assuming large cardinals, there are models ON C V. C W and a
cardinal k such that:

= W.

» V | “k is inaccessible”,
> (cfr)Y =w,
» and OO0}, fails in W (hence O, fails in W ).
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The main theorem

Question
What happens if k is singularized to have uncountable cofinality?

Theorem (L.-Sinapova)

Assuming large cardinals, there are models ON C V C W such
that:

» V |= "k is inaccessible”,
(55)Y = (s,

w < (cfr)Y <k,

Uy 7 fails in W for all 7 < k.

v

v

v
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Outline of the proof: a description of the model

It is known that if p is a Mahlo cardinal and Col(k, < u) is the
Lévy Collapse for making y into ™, then O, ; fails in
V[Col(k, < p)] for all 7 < k.

» Begin with a model V in which « is supercompact, p is a
Mabhlo cardinal, and & < p.
» Let Col(k, < ) be the Lévy Collapse for making j into <™.

» In V[Col(k, < p)], let Ml be Magidor's variation of Prikry
forcing for singularizing x to have an uncountable cofinality A.

» Then :che statement of the theo[em holds if
V = V[Col(k, < p)] and W = V[Col(k, < u) % M].
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>

>
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Suppose for contradiction that W has a U, ;-sequence C.

Argue that there is a model V'’ such that V ¢ V/ € W such
that V'’ has a [J,; .-sequence C'.

Moreover, argue that € is not a Uy --sequence in W because
it has a thread T. (This thread needs limit points, which is
why this only works if  has uncountable cofinality.)

The crux is to argue that T could not have been added in the
quotient W/V'.
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Outline of the proof: pointing to the technical crux

Fix 7 < k. We want to show that [, - fails in W. The steps are
the following:

>

>

Suppose for contradiction that W has a U, ;-sequence C.
Argue that there is a model V'’ such that V ¢ V/ € W such
that V'’ has a [J,; .-sequence C'.

Moreover, argue that € is not a Uy --sequence in W because
it has a thread T. (This thread needs limit points, which is
why this only works if  has uncountable cofinality.)

The crux is to argue that T could not have been added in the
quotient W/V'.

The most important technical ingredient is the Prikry Density
Lemma for Magidor Forcing.
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Further directions

Question
Does Magidor's forcing add a U, «.-sequence?

Question
Suppose ON C V C W are class models and « is a cardinal in V
such that:

1. V |E "k is inaccessible” ;
2. WE“dr<kr”;
3. (k)Y = (s,

Is there necessarily a [, «.-sequence?
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