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Why singular cardinals?

Theorem (Easton)

The continuum function κ 7→ 2κ on regular cardinals is
constrained only by:

I λ ≤ κ =⇒ 2λ ≤ 2κ (monotonicity)

I cf(2κ) > κ (König’s Theorem).

– The question was: can we extend this to singular cardinals?
– No!
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Maxwell Levine Kurt Gödel Research Center,Universität Wien



4/14

Singulars of countable versus uncountable cofinality

Theorem (Silver)

GCH cannot fail for the first time at a singular of uncountable
cofinality.

– The crux is that we can use Fodor’s Lemma.

Theorem (Magidor)

Relative to a supercompact cardinal, it is consistent that GCH
holds below ℵω but 2ℵω > ℵω+1.

Theorem (Shelah)

If ℵω is a strong limit (in particular if GCH holds below ℵω) then
2ℵω < ℵω4 .
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Singularizing cardinals

Theorem (Prikry)

If κ is measurable in some ground model V , then there is a κ+-c.c.
forcing P such that in V [P], κ is a singular strong limit cardinal of
countable cofinality.

Theorem (Silver)

If κ is supercompact, then it is consistent that there is a model
where κ is measurable and 2κ > κ+.

Silver + Prikry =⇒ Con(κ is a singular strong limit ∧ 2κ > κ+)

Theorem (Gitik)

If there is a model of set theory in which a cardinal κ is a singular
strong limit and 2κ > κ, then this implies the consistency of large
cardinals. This can be done so that the large cardinal assumption
is optimal.
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But what actually happens when we singularize cardinals?
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Defining squares

Definition
We say that 〈Cα | α ∈ lim(κ+)〉 is a �κ,λ-sequence if for all limit
α < κ+:

1. each C ∈ Cα is a club subset of α with ot(C ) ≤ κ;

2. for every C ∈ Cα, if β ∈ lim(C ), then C ∩ β ∈ Cβ;

3. 1 ≤ |Cα| ≤ λ.

I The �κ,λ-sequence cannot have a thread, i.e. there is no club
D ⊂ κ+ such that ∀α ∈ lim D, D ∩ α ∈ Cα.

I Note that �κ,1 is just the original Jensen’s �κ, and �κ,κ is
the weak square �∗κ. Also, ZFC proves �κ,2κ .

I When we speak of a “square sequence” we are often declining
to specify λ for �κ,λ.
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Uses of squares

Squares help us think about different models of set theory.

I L |= �κ for all κ.

I �κ,λ serves as a “yardstick” comparing a given model to L,
where a smaller λ means a stronger resemblance to L.

I Square sequences can be used to show that large cardinals are
necessary for certain results.

Squares also have specific combinatorial entailments.

I GCH +�κ implies that there is a κ+-Suslin tree.

I �∗κ is equivalent to a special κ+-Aronszajn tree.

I If µ < κ are infinite and �κ holds, then (κ+, κ)� (µ+, µ)
fails.
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Maxwell Levine Kurt Gödel Research Center,Universität Wien



8/14

Uses of squares

Squares help us think about different models of set theory.

I L |= �κ for all κ.

I �κ,λ serves as a “yardstick” comparing a given model to L,
where a smaller λ means a stronger resemblance to L.

I Square sequences can be used to show that large cardinals are
necessary for certain results.

Squares also have specific combinatorial entailments.

I GCH +�κ implies that there is a κ+-Suslin tree.

I �∗κ is equivalent to a special κ+-Aronszajn tree.

I If µ < κ are infinite and �κ holds, then (κ+, κ)� (µ+, µ)
fails.
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Consequences of singularizing cardinals

Theorem (Džamonja-Shelah and Gitik)

Suppose there are models ON ⊂ V ⊂W and a cardinal κ such
that:

I V |= “κ is inaccessible”,

I (κ+)V = (κ+)W ,

I and (cf κ)W = ω.

Then �κ,ω holds in W .

Fact (Gitik-Sharon)

Assuming large cardinals, there are models ON ⊂ V ⊂W and a
cardinal κ such that:

I V |= “κ is inaccessible”,

I (cf κ)W = ω,

I and �∗κ fails in W (hence �κ,ω fails in W ).
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The main theorem

Question
What happens if κ is singularized to have uncountable cofinality?

Theorem (L.-Sinapova)

Assuming large cardinals, there are models ON ⊂ V ⊂W such
that:

I V |= “κ is inaccessible”,

I (κ+)V = (κ+)W ,
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Outline of the proof: a description of the model

It is known that if µ is a Mahlo cardinal and Col(κ,< µ) is the
Lévy Collapse for making µ into κ+, then �κ,τ fails in
V [Col(κ,< µ)] for all τ < κ.

I Begin with a model V̄ in which κ is supercompact, µ is a
Mahlo cardinal, and κ < µ.

I Let Col(κ,< µ) be the Lévy Collapse for making µ into κ+.

I In V̄ [Col(κ,< µ)], let M be Magidor’s variation of Prikry
forcing for singularizing κ to have an uncountable cofinality λ.

I Then the statement of the theorem holds if
V = V̄ [Col(κ,< µ)] and W = V̄ [Col(κ,< µ) ∗M].
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I Let Col(κ,< µ) be the Lévy Collapse for making µ into κ+.

I In V̄ [Col(κ,< µ)], let M be Magidor’s variation of Prikry
forcing for singularizing κ to have an uncountable cofinality λ.

I Then the statement of the theorem holds if
V = V̄ [Col(κ,< µ)] and W = V̄ [Col(κ,< µ) ∗M].
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Lévy Collapse for making µ into κ+, then �κ,τ fails in
V [Col(κ,< µ)] for all τ < κ.

I Begin with a model V̄ in which κ is supercompact, µ is a
Mahlo cardinal, and κ < µ.
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Outline of the proof: pointing to the technical crux

Fix τ < κ. We want to show that �κ,τ fails in W . The steps are
the following:

I Suppose for contradiction that W has a �κ,τ -sequence C.

I Argue that there is a model V ′ such that V ⊂ V ′ ⊂W such
that V ′ has a �κ,τ -sequence C′.

I Moreover, argue that C′ is not a �κ,τ -sequence in W because
it has a thread T . (This thread needs limit points, which is
why this only works if κ has uncountable cofinality.)

I The crux is to argue that T could not have been added in the
quotient W /V ′.

The most important technical ingredient is the Prikry Density
Lemma for Magidor Forcing.
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Maxwell Levine Kurt Gödel Research Center,Universität Wien



12/14

Outline of the proof: pointing to the technical crux

Fix τ < κ. We want to show that �κ,τ fails in W . The steps are
the following:

I Suppose for contradiction that W has a �κ,τ -sequence C.

I Argue that there is a model V ′ such that V ⊂ V ′ ⊂W such
that V ′ has a �κ,τ -sequence C′.

I Moreover, argue that C′ is not a �κ,τ -sequence in W because
it has a thread T . (This thread needs limit points, which is
why this only works if κ has uncountable cofinality.)

I The crux is to argue that T could not have been added in the
quotient W /V ′.

The most important technical ingredient is the Prikry Density
Lemma for Magidor Forcing.
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Further directions

Question
Does Magidor’s forcing add a �κ,<κ-sequence?

Question
Suppose ON ⊂ V ⊂W are class models and κ is a cardinal in V
such that:

1. V |= “κ is inaccessible” ;

2. W |= “ cf κ < κ” ;

3. (κ+)V = (κ+)W .

Is there necessarily a �κ,<κ-sequence?
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Děkuji!
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