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Setting

L0 = LPRA.
P new (unary) relation symbol and LP = “L0 + P”.
For each Φ(P; x) ∈ LP (operator form) let IΦ be a new unary
relation symbol.
Consider the fix-point axiom

IΦ(x)↔ Φ(IΦ; x). (1)

The theory ÎD
i

1 is HA + (1) for all Φ(P; x) ∈ L where P occurs

only (strictly) positively. The classical variant is ÎD1.
(Note that there is no assumption on minimality or similar, as
opposed to the classical theory of least fixed points ID1.)
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i

1 is HA + (1) for all Φ(P; x) ∈ L where P occurs

only (strictly) positively. The classical variant is ÎD1.
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I ÎD1 is not conservative over PA.

II ÎD
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The goal (vagueness intended)

We seek a new proof of II based on the following ideas:

I Using a notion of realizability r to “transform” ÎD
i

1 into

r ÎD
i

1 ⊆ ÎD
i

1 (stating the axioms of ÎD
i

1 are realized),
“reducing complexity”.

I Construct satisfaction predicates and use the Diagonal Lemma
to construct fix points in HA.

This talk will focus on the second part. We will outline that ÎD
i

1
∗,

the theory of positive fixpoints of almost negative (no ∨, ∃ only
applies to equations) operator forms, is conservative over HA.



The goal (vagueness intended)

We seek a new proof of II based on the following ideas:

I Using a notion of realizability r to “transform” ÎD
i

1 into

r ÎD
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i

1
∗,

the theory of positive fixpoints of almost negative (no ∨, ∃ only
applies to equations) operator forms, is conservative over HA.



The goal (vagueness intended)

We seek a new proof of II based on the following ideas:

I Using a notion of realizability r to “transform” ÎD
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An almost negative hierarchy Θn

Goal: ÎD
i

1
∗ ` ϕ⇒ HA ` ϕ.

L expansion of L0 with new relations.
Θ0 are the formulae of the form

∃x(s == t) ∧
∧
k

atk

Θn+1 are the formulae of the form

∀x
∧
k

(Θn → Θ0)k

Θ∗0 is the closure of Θ0 ∪ at∪{∃x(s == t)} under conjunction.
Θ∗n+1 is the closure of Θn+1 ∪Θ∗n under conjunction, universal
quantification and the rule: If ϕ ∈ Θ∗n+1 and ψ ∈ Θ∗n, then
ψ → ϕ ∈ Θ∗n+1.
Important: “==” only relation in scope of ∃!
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i

1
∗ ` ϕ⇒ HA ` ϕ.

L expansion of L0 with new relations.
Θ0 are the formulae of the form

∃x(s == t) ∧
∧
k

atk

Θn+1 are the formulae of the form

∀x
∧
k

(Θn → Θ0)k

Θ∗0 is the closure of Θ0 ∪ at∪{∃x(s == t)} under conjunction.
Θ∗n+1 is the closure of Θn+1 ∪Θ∗n under conjunction, universal
quantification and the rule: If ϕ ∈ Θ∗n+1 and ψ ∈ Θ∗n, then
ψ → ϕ ∈ Θ∗n+1.
Important: “==” only relation in scope of ∃!



An almost negative hierarchy Θn

Goal: ÎD
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An almost negative hierarchy Θn

Goal: ÎD
i

1
∗ ` ϕ⇒ HA ` ϕ.

Lemma (1. Θn)

1. Θ∗n exhaust the almost negative formulae:
⋃

n∈N Θ∗n = AN.

2. n > 0: Θn are provably equivalent in PA to Πn+1 and vice
versa. Similarly, Θ0 are PA-equivalent to Σ1.

3. There is a prim. rec. θn transforming Θ∗n into Θn, preserving
HA-equivalence (we will suppress this).

4. If ϕ(P; x̄) ∈ Θ∗n is positive in P and ϑ ∈ Θ∗n, then
ϕ(ϑ; x̄) ∈ Θ∗n.

Conjecture (2. Diagonal Lemma)

Θ∗n is “stable” under the diagonal lemma: if ϕ ∈ Θ∗n then the
diag. lma. gives ψ ∈ Θ∗n with

HA ` ψ ↔ ϕ(pψq).
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A satisfaction predicate
Goal: ÎD

i

1
∗ ` ϕ⇒ HA ` ϕ.

Lemma (3. Satisfaction)

There are Satn(e,F ) ∈ Θ∗n ∩ L0 with

HA ` Eval(e, ϕ)→ (Satn(e, pϕ(x)q)↔ ϕ(apl(e, x)))

for each ϕ ∈ Θn ∩ L0.

Proof.
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Constructing fix-points
Goal: ÎD

i

1
∗ ` ϕ⇒ HA ` ϕ.

Let Φ(P; x) be almost negative with P (strictly) positively.
By Lemma 1.1 Φ ∈ Θ∗n for some n > 0.
By Lemma 1.4 Φ(Satn(∅ ·x , d); x) ∈ Θ∗n.
Apply the Diagonal Lemma conjecture (2) on d : there is ψ ∈ Θ∗n
with

HA ` ψ(x)↔ Φ(Satn(∅ ·x , pψq); x).

By Lemma 3 Satn is disquotational, so
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i

1
∗ ` ϕ⇒ HA ` ϕ.

Let Φ(P; x) be almost negative with P (strictly) positively.
By Lemma 1.1 Φ ∈ Θ∗n for some n > 0.
By Lemma 1.4 Φ(Satn(∅ ·x , d); x) ∈ Θ∗n.
Apply the Diagonal Lemma conjecture (2) on d : there is ψ ∈ Θ∗n
with

HA ` ψ(x)↔ Φ(Satn(∅ ·x , pψq); x).

By Lemma 3 Satn is disquotational, so

HA ` ψ(x)↔ Φ(ψ; x).

Hence any finte fragment of ÎD
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i

1
∗ is conservative over HA.



Thank you for your attention!
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