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P new (unary) relation symbol and Lp = “Lo + P".

For each ®(P; x) € Lp (operator form) let l¢ be a new unary
relation symbol.

Consider the fix-point axiom

lo(x) < ®(lp; x). (1)

The theory I/]\Dll is HA + (1) for all ®(P;x) € L where P occurs
only (strictly) positively. The classical variant is ID;.

(Note that there is no assumption on minimality or similar, as
opposed to the classical theory of least fixed points ID;.)
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I1 I/I\)ll is conservative over HA [Arall].
See also [Buc97], [Ara98] and [RS02].
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This talk will focus on the second part. We will outline that ID;*,
the theory of positive fixpoints of almost negative (no Vv, 3 only
applies to equations) operator forms, is conservative over HA.
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L expansion of Lg with new relations.
©g are the formulae of the form

Ix(s=t)A /\ aty
k

©p11 are the formulae of the form

Vx /\(@,, — eo)k
k

¢ is the closure of ©g U atU{3dx(s = t)} under conjunction.
ni1 is the closure of ©,41 U ©jF under conjunction, universal
quantification and the rule: If ¢ € ©}; and ¢ € O}, then
Y= o€,
Important: “=" only relation in scope of !
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Conjecture (2. Diagonal Lemma)

©3, is “stable” under the diagonal lemma: if ¢ € ©7, then the
diag. Ima. gives 1) € ©} with

HAF 4 < o(Ty7).
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Thank you for your attention!
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