Invertible binary algebras principally isotopic to a group

Davit Shahnazaryan
Joint work with Sergey Davidov

Chair of Geometry and Algebra
Faculty of Mathematics and Mechanics
Yerevan State University

Logic Colloquium 2019
Introduction

Auxiliary results

The setting of the problem

Main results
Definition 1
A binary groupoid $Q(A)$ is a non-empty set Q together with a binary operation A. Binary groupoid $Q(A)$ is called quasigroup if for all ordered pairs $(a, b) \in Q^2$ exists unique solutions $x, y \in Q$ of the following equations:

$$A(a, x) = b, A(y, a) = b.$$

The solutions of these equations will be denoted by $x = A^{-1}(a, b)$ and $y = A^-(b, a)$, respectively.

Definition 2
A binary algebra $(Q; \Sigma)$ is called invertible algebra or system of quasigroups if each operation in Σ is a quasigroup operation.
Definition 1
A binary groupoid $Q(A)$ is a non-empty set Q together with a binary operation A. Binary groupoid $Q(A)$ is called quasigroup if for all ordered pairs $(a, b) \in Q^2$ exists unique solutions $x, y \in Q$ of the following equations:

$$A(a, x) = b, A(y, a) = b.$$

The solutions of these equations will be denoted by $x = A^{-1}(a, b)$ and $y = A^{-1}(b, a)$, respectively.

Definition 2
A binary algebra $(Q; \Sigma)$ is called invertible algebra or system of quasigroups if each operation in Σ is a quasigroup operation.
With each invertible algebra \((Q; \Sigma)\) the next five invertible algebras are connected:

\[(Q; \Sigma^{-1}), (Q; -\Sigma), (Q; -1(\Sigma^{-1})), (Q; (-\Sigma)^{-1}), (Q; \Sigma^*),\]

where

\[
\begin{align*}
\Sigma^{-1} &= \{ A^{-1} | A \in \Sigma \}, \\
-\Sigma &= \{ -1A | A \in \Sigma \}, \\
-1(\Sigma^{-1}) &= \{ -1(A^{-1}) | A \in \Sigma \}, \\
(-\Sigma)^{-1} &= \{ (-1A)^{-1} | A \in \Sigma \}, \\
\Sigma^* &= \{ A^* | A \in \Sigma \}.
\end{align*}
\]

Each of these invertible algebras are called parastrophies of the algebra \((Q; \Sigma)\).
Let us recall that the following absolutely closed second-order formula:

\[\forall X_1, \ldots, X_m \forall x_1, \ldots, x_n \ (\omega_1 = \omega_2), \]
\[\forall X_1, \ldots, X_k \exists X_{k+1} \ldots, X_m \forall x_1, \ldots, x_n \ (\omega_1 = \omega_2), \]

where \(\omega_1, \omega_2 \) are words written in the functional variables, \(X_1, \ldots, X_m \), and in the objective variables, \(x_1, \ldots, x_n \), are called \(\forall(\forall) \)-identity or hyperidentity and \(\forall\exists(\forall) \)-identity.

The satisfiability (truth) of these second order formula in the algebra \((Q; \Sigma) \) is in the sense of functional quantifiers \((\forall X_i) \) and \((\exists X_j) \) meaning: ”for every value \(X_i = A \in \Sigma \) of the corresponding arity” and ”there exists a value \(X_j = A \in \Sigma \) of the corresponding arity”.

Definition 3
The groupoid \(Q(A) \) is called isotopic to the groupoid \(Q(B) \) if exist three maps \(\alpha, \beta, \gamma \) of \(Q \) to \(Q \) such that

\[
\gamma B(x, y) = A(\alpha x, \beta y)
\]

for all \(x, y \in Q \). The isotopy of the form \(T = (\alpha, \beta, \varepsilon) \), where \(\varepsilon \) is the identity map, is called principal isotope.

Definition 4
We say that a binary algebra \((Q; \Sigma) \) is isotopic to the groupoid \(Q(\cdot) \), if each operation in \(\Sigma \) is isotopic to the groupoid \(Q(\cdot) \), i.e. for every operation \(A \in \Sigma \) there exists permutations \(\alpha_A, \beta_A, \gamma_A \) of \(Q \), that:

\[
\gamma_A A(x, y) = \alpha_A x \cdot \beta_A y,
\]

for every \(x, y \in Q \). Isotopy is called principal if \(\gamma_A = \varepsilon (\varepsilon - \text{unit permutation}) \) for every \(A \in \Sigma \).
Definition 3
The groupoid $Q(A)$ is called isotopic to the groupoid $Q(B)$ if exist three maps α, β, γ of Q to Q such that

$$\gamma B(x, y) = A(\alpha x, \beta y)$$

for all $x, y \in Q$. The isotopy of the form $T = (\alpha, \beta, \epsilon)$, where ϵ is the identity map, is called principal isotope.

Definition 4
We say that a binary algebra $(Q; \Sigma)$ is isotopic to the groupoid $Q(\cdot)$, if each operation in Σ is isotopic to the groupoid $Q(\cdot)$, i.e. for every operation $A \in \Sigma$ there exists permutations $\alpha_A, \beta_A, \gamma_A$ of Q, that:

$$\gamma_A A(x, y) = \alpha_A x \cdot \beta_A y,$$

for every $x, y \in Q$. Isopoty is called principal if $\gamma_A = \epsilon$ (\epsilon - unit permutation) for every $A \in \Sigma$.
In 1961 V.D. Belousov characterised quasigroups isotopic to groups and abelian groups.

Theorem 5

Let the nonempty set Q form a quasigroup under four operations A_i ($i=1,2,3,4$). If these operations satisfy the following identity:

$$A_1(A_2(x, y), z) = A_3(x, A_4(y, z)),$$

then there exists an operation (\cdot) under which Q forms a group isotopic to all these four quasigroups.
In 1961 V.D. Belousov characterised quasigroups isotopic to groups and abelian groups.

Theorem 5

Let the nonempty set Q form a quasigroup under four operations A_i ($i=1,2,3,4$). If these operations satisfy the following identity:

$$A_1(A_2(x, y), z) = A_3(x, A_4(y, z)),$$

then there exists an operation \cdot under which Q forms a group isotopic to all these four quasigroups.
Theorem 6

Let the nonempty set Q form a quasigroup under six operations A_i ($i=1,2,3,4,5,6$). If these operations satisfy the following identity:

$$A_1(A_2(x, y), A_3(z, u)) = A_4(A_5(x, z), A_6(y, u)),$$

then there exists an operation (\cdot) under which Q forms an abelian group isotopic to all these six quasigroups, i.e.

$$A_1(x, y) = \alpha x \cdot \beta y, \quad A_4(x, y) = \chi x \cdot \varphi y,$$
$$A_2(x, y) = \alpha^{-1}(\gamma x \cdot \delta y), \quad A_5(x, y) = \chi^{-1}(\gamma x \cdot \theta y),$$
$$A_3(x, y) = \beta^{-1}(\theta x \cdot \psi y), \quad A_6(x, y) = \varphi^{-1}(\delta x \cdot \psi y),$$

where $\alpha, \beta, \gamma, \delta, \chi, \varphi, \psi, \theta$ are permutations of Q.
We obtained characterizations of invertible algebras principally isotopic to a group or an abelian group by second-order formulas.
Theorem 7

The invertible algebra \((Q; \Sigma)\) is principally isotopic to a group, if and only if the following second-order formula

\[
A^{-1}A(B(x, B^{-1}(y, z)), u), v) = B(x, B^{-1}(y, A^{-1}A(z, u), v))),
\]

is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup^{-1} \Sigma)\) for all \(A, B \in \Sigma\).

Corollary 8

The class of quasigroups isotopic to groups is characterized by the following identity:

\[
x(y \langle (z/u)v)) = ((x(y \langle z))/u)v.
\]
Theorem 7
The invertible algebra \((Q; \Sigma)\) is principally isotopic to a group, if and only if the following second-order formula

\[
A(\theta A(B(x, B^{-1}(y, z)), u), v) = B(x, B^{-1}(y, A(\theta A(z, u), v))),
\]

is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup^{-1} \Sigma)\) for all \(A, B \in \Sigma\).

Corollary 8
The class of quasigroups isotopic to groups is characterized by the following identity:

\[
x(y \backslash ((z/u)v)) = ((x(y \backslash z))/u)v.
\]
Theorem 9

The invertible algebra \((Q; \Sigma)\) is principally isotopic to an abelian group if and only if the following second-order formula:

\[
A^{-1} A(B(x, z), y), A^{-1}(u, B(w, y))) = \\
A^{-1} A(B(w, z), y), A^{-1}(u, B(x, y))).
\]

is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup^{-1} \Sigma)\) for all \(A, B \in \Sigma\).

Corollary 10

The class of quasigroups isotopic to abelian groups is characterized by the following identity:

\[
((xz)/y)(u \setminus (wy)) = ((wz)/y)(u \setminus (xy)).
\]
Theorem 9
The invertible algebra \((Q; \Sigma)\) is principally isotopic to an abelian group if and only if the following second-order formula:

\[
A^{-1} A(B(x, z), y), A^{-1}(u, B(w, y))) = \\
= A^{-1} A(B(w, z), y), A^{-1}(u, B(x, y))).
\]

is valid in the algebra \((Q; \Sigma \cup \Sigma^{-1} \cup^{-1} \Sigma)\) for all \(A, B \in \Sigma\).

Corollary 10
The class of quasigroups isotopic to abelian groups is characterized by the following identity:

\[
((xz)/y)(u \setminus (wy)) = ((wz)/y)(u \setminus (xy)).
\]
The invertible algebra \((Q; \Sigma)\) with hyperidentity either (4.1), (4.2) or (4.3) is isotopic to an abelian group.
Invertible binary algebras principally isotopic to a group

Main results

Proposition

\[X(Y(x, y), z) = Y(X(z, y), x) \] (4.1)

\[X(Y(x, y), z) = X(Y(z, y), x) \] (4.2)

\[X(X(x, y), z) = Y(Y(z, y), x) \] (4.3)

The invertible algebra \((Q; \Sigma)\) with hyperidentity either (4.1), (4.2) or (4.3) is isotopic to an abelian group.