Computability theory, reverse mathematics, and Hindman’s Theorem

Denis R. Hirschfeldt

University of Chicago
Hindman’s Theorem (HT): For every coloring of \mathbb{N} with finitely many colors, there is an infinite $S \subseteq \mathbb{N}$ s.t. every nonempty sum of distinct elements of S has the same color.
Hindman’s Theorem (HT): For every coloring of \mathbb{N} with finitely many colors, there is an infinite $S \subseteq \mathbb{N}$ s.t. every nonempty sum of distinct elements of S has the same color.

HT is a Π^1_2 principle, of the form

$$\forall X \left[\Phi(X) \rightarrow \exists Y \psi(X, Y) \right]$$

with Φ and ψ arithmetic.
Hindman’s Theorem (HT): For every coloring of \(\mathbb{N} \) with finitely many colors, there is an infinite \(S \subseteq \mathbb{N} \) s.t. every nonempty sum of distinct elements of \(S \) has the same color.

HT is a \(\Pi^1_2 \) principle, of the form

\[
\forall X \left[\Phi(X) \rightarrow \exists Y \psi(X, Y) \right]
\]

with \(\Phi \) and \(\psi \) arithmetic.

We can think of such a principle as a **problem**.

An **instance** of such a problem is an \(X \) s.t. \(\Phi(X) \) holds.

A **solution** to this instance is a \(Y \) s.t. \(\psi(X, Y) \) holds.
Hindman’s Theorem (HT): For every coloring of \(\mathbb{N} \) with finitely many colors, there is an infinite \(S \subseteq \mathbb{N} \) s.t. every nonempty sum of distinct elements of \(S \) has the same color.

HT is a \(\Pi^1_2 \) principle, of the form

\[
\forall X [\Phi(X) \rightarrow \exists Y \psi(X, Y)]
\]

with \(\Phi \) and \(\psi \) arithmetic.

We can think of such a principle as a **problem**.

An **instance** of such a problem is an \(X \) s.t. \(\Phi(X) \) holds.

A **solution** to this instance is a \(Y \) s.t. \(\psi(X, Y) \) holds.

This is a natural context for computability-theoretic analysis.
We can also employ the perspective of reverse mathematics:
We can also employ the perspective of reverse mathematics:

RCA_0 is the usual weak base system of reverse mathematics, corresponding roughly to computable mathematics.

All implications below are over RCA_0.
We can also employ the perspective of reverse mathematics:

\(\text{RCA}_0 \) is the usual weak base system of reverse mathematics, corresponding roughly to computable mathematics.

All implications below are over \(\text{RCA}_0 \).

\(\text{ACA}_0 \) corresponds roughly to arithmetic mathematics.

\(\text{ACA}_0 \) proves that for every \(X \), the jump \(X' \) exists, and hence that so does each finite iterate \(X^{(n)} \).
We can also employ the perspective of reverse mathematics:

RCA₀ is the usual weak base system of reverse mathematics, corresponding roughly to computable mathematics.

All implications below are over RCA₀.

ACA₀ corresponds roughly to arithmetic mathematics.

ACA₀ proves that for every X, the jump X’ exists, and hence that so does each finite iterate X^(n).

ACA₀⁺ adds to ACA₀ that for every X, the ωˢᵗ jump X^(ω) exists.
Thm (Blass, Hirst, and Simpson).

1. Every computable instance of HT has an $\emptyset^{(\omega+1)}$-computable solution.

2. There is a computable instance of HT all of whose solutions compute \emptyset'.

3. $\text{ACA}_0^+ \rightarrow \text{HT}$.

4. $\text{HT} \rightarrow \text{ACA}_0$.
Thm (Blass, Hirst, and Simpson).

1. Every computable instance of HT has an $\emptyset^{(\omega+1)}$-computable solution.

2. There is a computable instance of HT all of whose solutions compute \emptyset'.

3. $\text{ACA}_0^+ \rightarrow \text{HT}$.

4. $\text{HT} \rightarrow \text{ACA}_0$.

Open Question. Does HT hold arithmetically? Does $\text{ACA}_0 \rightarrow \text{HT}$?
Iterated Hindman’s Theorem (IHT): For instances c_0, c_1, \ldots of HT, there are $x_0 < x_1 < \cdots$ s.t. each $\{x_i : i \geq n\}$ is a solution to c_n. The results of Blass, Hirst, and Simpson also hold for IHT. One way to prove (I)HT is to use idempotent ultrafilters. Let $A_k = \{n : n + k \in A\}$. The set of ultrafilters on \mathbb{N} is a semigroup under the operation $U \oplus V = \{A : \{k : A_k \in U\} \in V\}$. U is idempotent if $U \oplus U = U$. Hirst showed that IHT is equivalent to the existence of certain countable approximations to idempotent ultrafilters.
Iterated Hindman’s Theorem (IHT): For instances c_0, c_1, \ldots of HT, there are $x_0 < x_1 < \cdots$ s.t. each $\{x_i : i \geq n\}$ is a solution to c_n.

The results of Blass, Hirst, and Simpson also hold for IHT.
Iterated Hindman’s Theorem (IHT): For instances c_0, c_1, \ldots of HT, there are $x_0 < x_1 < \cdots$ s.t. each $\{x_i : i \geq n\}$ is a solution to c_n.

The results of Blass, Hirst, and Simpson also hold for IHT.

One way to prove (I)HT is to use idempotent ultrafilters.
Iterated Hindman’s Theorem (IHT): For instances c_0, c_1, \ldots of HT, there are $x_0 < x_1 < \cdots$ s.t. each $\{x_i : i \geq n\}$ is a solution to c_n.

The results of Blass, Hirst, and Simpson also hold for IHT.

One way to prove (I)HT is to use idempotent ultrafilters.

Let $A - k = \{n : n + k \in A\}$.

The set of ultrafilters on \mathbb{N} is a semigroup under the operation

$$U \oplus V = \{A : \{k : A - k \in U\} \in V\}.$$

U is idempotent if $U \oplus U = U$.

Iterated Hindman’s Theorem (IHT): For instances \(c_0, c_1, \ldots \) of HT, there are \(x_0 < x_1 < \cdots \) s.t. each \(\{x_i : i \geq n\} \) is a solution to \(c_n \).

The results of Blass, Hirst, and Simpson also hold for IHT.

One way to prove (I)HT is to use idempotent ultrafilters.

Let \(A - k = \{n : n + k \in A\} \).

The set of ultrafilters on \(\mathbb{N} \) is a semigroup under the operation

\[
U \oplus V = \{A : \{k : A - k \in U\} \in V\}.
\]

\(U \) is idempotent if \(U \oplus U = U \).

Hirst showed that IHT is equivalent to the existence of certain countable approximations to idempotent ultrafilters.
Montalbán and Shore developed a framework to expand the language of second-order arithmetic to talk about ultrafilters. They showed that ACA$_0$ plus the existence of an idempotent ultrafilter implies IHT. They also showed that the existence of an idempotent ultrafilter is conservative over ACA$_0$ plus IHT, ACA$_0^+$, and several other systems. Kreuzer also showed the Π^1_2-conservativity of the existence of an idempotent ultrafilter over ACA$_0$ plus IHT and ACA$_0^+$ by working in higher-order reverse mathematics.

Open Question. Is the existence of an idempotent ultrafilter conservative over ACA$_0$?
Montalbán and Shore developed a framework to expand the language of second-order arithmetic to talk about ultrafilters. They showed that ACA$_0$ plus the existence of an idempotent ultrafilter implies IHT. They also showed that the existence of an idempotent ultrafilter is conservative over ACA$_0$ + IHT, ACA$_0^+$, and several other systems.
Montalbán and Shore developed a framework to expand the language of second-order arithmetic to talk about ultrafilters.

They showed that ACA₀ plus the existence of an idempotent ultrafilter implies IHT.

They also showed that the existence of an idempotent ultrafilter is conservative over ACA₀ + IHT, ACA₀⁺, and several other systems.

Kreuzer also showed the \(\Pi^1_2 \)-conservativity of the existence of an idempotent ultrafilter over ACA₀ + IHT and ACA₀⁺ by working in higher-order reverse mathematics.
Montalbán and Shore developed a framework to expand the language of second-order arithmetic to talk about ultrafilters. They showed that ACA$_0$ plus the existence of an idempotent ultrafilter implies IHT. They also showed that the existence of an idempotent ultrafilter is conservative over ACA$_0$ + IHT, ACA$_0^+$, and several other systems. Kreuzer also showed the Π^1_2-conservativity of the existence of an idempotent ultrafilter over ACA$_0$ + IHT and ACA$_0^+$ by working in higher-order reverse mathematics.

Open Question. Is the existence of an idempotent ultrafilter conservative over ACA$_0$?
Hindman’s Theorem (HT): For every coloring of \mathbb{N} with finitely many colors, there is an infinite $S \subseteq \mathbb{N}$ s.t. every nonempty sum of distinct elements of S has the same color.

$\mathsf{HT}^{\leq n}$ is HT for sums of at most n many elements.
Hindman’s Theorem (HT): For every coloring of \(\mathbb{N} \) with finitely many colors, there is an infinite \(S \subseteq \mathbb{N} \) s.t. every nonempty sum of distinct elements of \(S \) has the same color.

\(\text{HT}^{\leq n} \) is HT for sums of at most \(n \) many elements.

\(\text{HT}^{\leq 2} \) “should be” simpler to prove than HT, but:
Hindman’s Theorem (HT): For every coloring of \mathbb{N} with finitely many colors, there is an infinite $S \subseteq \mathbb{N}$ s.t. every nonempty sum of distinct elements of S has the same color.

$\text{HT}^{\leq n}$ is HT for sums of at most n many elements.

$\text{HT}^{\leq 2}$ “should be” simpler to prove than HT, but:

Open Question (Hindman, Leader, and Strauss). Is there a proof of $\text{HT}^{\leq 2}$ that is not a proof of HT?
Hindman’s Theorem (HT): For every coloring of \(\mathbb{N} \) with finitely many colors, there is an infinite \(S \subseteq \mathbb{N} \) s.t. every nonempty sum of distinct elements of \(S \) has the same color.

\[\text{HT}^{\leq n} \] is HT for sums of at most \(n \) many elements.

\[\text{HT}^{\leq 2} \] “should be” simpler to prove than HT, but:

Open Question (Hindman, Leader, and Strauss). Is there a proof of \(\text{HT}^{\leq 2} \) that is not a proof of HT? Does \(\text{HT}^{\leq 2} \rightarrow \text{HT} \)?
Hindman’s Theorem (HT): For every coloring of \(\mathbb{N} \) with finitely many colors, there is an infinite \(S \subseteq \mathbb{N} \) s.t. every nonempty sum of distinct elements of \(S \) has the same color.

\(\text{HT}^{\leq n} \) is HT for sums of at most \(n \) many elements.

\(\text{HT}^{\leq 2} \) “should be” simpler to prove than HT, but:

Open Question (Hindman, Leader, and Strauss). Is there a proof of \(\text{HT}^{\leq 2} \) that is not a proof of HT? Does \(\text{HT}^{\leq 2} \rightarrow \text{HT} \)?

Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski). \(\text{HT}^{\leq 2} \rightarrow \text{ACA}_0 \).

HT^n is HT for sums of exactly n many elements.
$\text{HT}^=n$ is HT for sums of exactly n many elements.

$[X]^n$ is the set of n-element subsets of X.

RT^n: For every coloring of $[\mathbb{N}]^n$ with finitely many colors, there is an infinite $H \subseteq \mathbb{N}$ s.t. every element of $[H]^n$ has the same color.

It is easy to see that $\text{RT}^n \rightarrow \text{HT}^=n$.
HT$^=n$ is HT for sums of exactly n many elements.

$[X]^n$ is the set of n-element subsets of X.

RTn: For every coloring of $[\mathbb{N}]^n$ with finitely many colors, there is an infinite $H \subseteq \mathbb{N}$ s.t. every element of $[H]^n$ has the same color.

It is easy to see that RT$^n \rightarrow$ HT$^=n$.

Thm (Seetapun). RT$^2 \rightarrow$ ACA$_0$.

So HT$^=2$ is strictly weaker than ACA$_0$.
$HT^=n$ is HT for sums of exactly n many elements.

$[X]^n$ is the set of n-element subsets of X.

RT^n: For every coloring of $[\mathbb{N}]^n$ with finitely many colors, there is an infinite $H \subseteq \mathbb{N}$ s.t. every element of $[H]^n$ has the same color.

It is easy to see that $RT^n \rightarrow HT^=n$.

Thm (Seetapun). $RT^2 \rightarrow ACA_0$.

So $HT^=2$ is strictly weaker than ACA_0.

Question (Dzhafarov, Jockusch, Solomon, and Westrick). Is $HT^=2$ computably true? Is it provable in RCA_0?
Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). \(HT^{=2} \) is not computably true, and hence is not provable in \(\text{RCA}_0 \).
Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). HT^2 is not computably true, and hence is not provable in RCA$_0$.

Building a computable instance $c : \mathbb{N} \rightarrow 2$ of HT^2 with no computable solution:
Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). \(HT^{=2} \) is not computably true, and hence is not provable in \(RCA_0 \).

Building a computable instance \(c : \mathbb{N} \rightarrow 2 \) of \(HT^{=2} \) with no computable solution:

Let \(X + s = \{ k + s : k \in X \} \) and let \(W_i \) be the \(i^{\text{th}} \) c.e. set.
Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). $HT^=2$ is not computably true, and hence is not provable in RCA_0.

Building a computable instance $c : \mathbb{N} \to 2$ of $HT^=2$ with no computable solution:

Let $X + s = \{k + s : k \in X\}$ and let W_i be the i^{th} c.e. set.

Wait for a sufficiently large finite $F_i \subseteq W_i$.

Ensure that $F_i + s$ is not monochromatic for all sufficiently large s.
Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). HT^2 is not computably true, and hence is not provable in RCA_0.

Building a computable instance $c : \mathbb{N} \to 2$ of HT^2 with no computable solution:

Let $X + s = \{k + s : k \in X\}$ and let W_i be the i^{th} c.e. set.

Wait for a sufficiently large finite $F_i \subseteq W_i$.

Ensure that $F_i + s$ is not monochromatic for all sufficiently large s.

Problem: interactions between the strategies for different i's.
Think of the $c(n)$’s as mutually independent random variables, with values 0 and 1 each having probability $\frac{1}{2}$.
Think of the $c(n)$’s as mutually independent random variables, with values 0 and 1 each having probability $\frac{1}{2}$.

If F_i is large then the event that $F_i + s$ is monochromatic for c has low probability.
Think of the $c(n)'s$ as mutually independent random variables, with values 0 and 1 each having probability $\frac{1}{2}$.

If F_i is large then the event that $F_i + s$ is monochromatic for c has low probability.

These events for $F_i + s$ and $F_j + t$ are independent when s and t are sufficiently far apart.
Think of the $c(n)$’s as mutually independent random variables, with values 0 and 1 each having probability $\frac{1}{2}$.

If F_i is large then the event that $F_i + s$ is monochromatic for c has low probability.

These events for $F_i + s$ and $F_j + t$ are independent when s and t are sufficiently far apart.

So we need to know that when events with “sufficiently small” probability are “sufficiently independent” then it is possible to avoid them all.
Think of the $c(n)$’s as mutually independent random variables, with values 0 and 1 each having probability $\frac{1}{2}$.

If F_i is large then the event that $F_i + s$ is monochromatic for c has low probability.

These events for $F_i + s$ and $F_j + t$ are independent when s and t are sufficiently far apart.

So we need to know that when events with “sufficiently small” probability are “sufficiently independent” then it is possible to avoid them all effectively.
To do this, we use the **Computable Lovász Local Lemma of Rumyantsev and Shen**, in the form of the following corollary:
To do this, we use the **Computable Lovász Local Lemma** of Rumyantsev and Shen, in the form of the following corollary:

For each $q \in (0, 1)$ there is an M s.t. the following holds.

Let E_0, E_1, \ldots be a computable sequence of finite sets, each of size at least M.

Suppose that for each $m \geq M$ and n, there are at most 2^{qm} many i s.t. $|E_i| = m$ and $n \in E_i$, and that we can compute the set of all such i given m and n.

Then there is a computable $c : \mathbb{N} \to 2$ s.t. for each i the set E_i is not monochromatic for c.
Building a computable instance $c : \mathbb{N} \to 2$ of HT^2 with no computable solution:

Wait for a sufficiently large finite $F_i \subseteq W_i$.

Use the computable LLL to ensure that $F_i + s$ is not monochromatic for all sufficiently large s.

Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). There is a computable instance of HT^2 s.t. every solution is diagonally noncomputable (DNC) relative to \emptyset'.
Building a computable instance $c : \mathbb{N} \to 2$ of HT$^=2$ with no computable solution:

Wait for a sufficiently large finite $F_i \subseteq W_i$.

Use the computable LLL to ensure that $F_i + s$ is not monochromatic for all sufficiently large s.

We can work with $W_i^{\emptyset'}$ instead, to obtain a c with to Σ^0_2 solution.
Building a computable instance \(c : \mathbb{N} \to 2 \) of \(\text{HT}^=2 \) with no computable solution:

Wait for a sufficiently large finite \(F_i \subseteq W_i \).

Use the computable LLL to ensure that \(F_i + s \) is not monochromatic for all sufficiently large \(s \).

We can work with \(W_i^{\emptyset'} \) instead, to obtain a \(c \) with to \(\Sigma^0_2 \) solution.

The sizes of the \(F_i \) can be computably bounded, so we can also ensure that solutions to \(c \) are effectively immune relative to \(\emptyset' \).
Building a computable instance $c : \mathbb{N} \rightarrow 2$ of HT$=^2$ with no computable solution:

Wait for a sufficiently large finite $F_i \subseteq W_i$.

Use the computable LLL to ensure that $F_i + s$ is not monochromatic for all sufficiently large s.

We can work with $W_i^{\emptyset'}$ instead, to obtain a c with to Σ^0_2 solution.

The sizes of the F_i can be computably bounded, so we can also ensure that solutions to c are effectively immune relative to \emptyset'.

Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). There is a computable instance of HT$=^2$ s.t. every solution is diagonally noncomputable (DNC) relative to \emptyset'.
2-DNC is the reverse-mathematical principle corresponding to diagonal noncomputability relative to the jump.
2-DNC is the reverse-mathematical principle corresponding to diagonal noncomputability relative to the jump.

\[\text{RRT}_2^2: \text{ If } c : [\mathbb{N}]^2 \to \mathbb{N} \text{ is s.t. } |c^{-1}(i)| \leq 2 \text{ for all } i, \text{ there is an infinite } R \subseteq \mathbb{N} \text{ s.t. } c \text{ is injective on } [R]^2. \]

Thm (J. Miller). \(\text{RRT}_2^2 \leftrightarrow 2\text{-DNC}. \)
2-DNC is the reverse-mathematical principle corresponding to diagonal noncomputability relative to the jump.

\[\text{RRT}_2^2: \text{ If } c : [\mathbb{N}]^2 \rightarrow \mathbb{N} \text{ is s.t. } |c^{-1}(i)| \leq 2 \text{ for all } i, \text{ there is an infinite } R \subseteq \mathbb{N} \text{ s.t. } c \text{ is injective on } [R]^2. \]

Thm (J. Miller). \(\text{RRT}_2^2 \leftrightarrow 2\text{-DNC}. \)

Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick). \(\text{HT}^{=2} \rightarrow 2\text{-DNC}. \)
2-DNC is the reverse-mathematical principle corresponding to diagonal noncomputability relative to the jump.

\[\text{RRT}_2^2: \text{ If } c : [\mathbb{N}]^2 \to \mathbb{N} \text{ is s.t. } |c^{-1}(i)| \leq 2 \text{ for all } i, \text{ there there is an infinite } R \subseteq \mathbb{N} \text{ s.t. } c \text{ is injective on } [R]^2. \]

\textbf{Thm (J. Miller).} \text{ RRT}_2^2 \leftrightarrow 2\text{-DNC.}

\textbf{Thm (Csima, Dzhafarov, Hirschfeldt, Jockusch, Solomon, and Westrick).} \text{ HT}^=^2 \to 2\text{-DNC.}

\textbf{Open Question.} \text{ Does } 2\text{-DNC } \to \text{ HT}^=^2? \\
\textbf{Open Question.} \text{ Does } \text{ HT}^=^2 \to \text{ RT}^2?
An instance of HT$^{< 2}$ or RT2 might have no solution containing a given n.

HT2 has a solution containing n.
An instance of $\text{HT}^{\leq 2}$ or RT^2 might have no solution containing a given n.

However, every instance of HT^2 does have such a solution:

$\text{HT}^2(n)$ is basically $\text{HT}^{\leq 2}$.
An instance of $HT \leq^2$ or RT^2 might have no solution containing a given n.

However, every instance of $HT =^2$ does have such a solution:

$HT =^2(n)$: every instance of $HT =^2$ has a solution containing n.
An instance of $HT^{\leq 2}$ or RT^2 might have no solution containing a given n.

However, every instance of $HT=2$ does have such a solution:

$HT=2(n)$: every instance of $HT=2$ has a solution containing n.

$HT=2(0)$ is basically $HT^{\leq 2}$.
An instance of HT\(\leq 2\) or RT\(^2\) might have no solution containing a given \(n\).

However, every instance of HT\(^2\) does have such a solution:

\[
\text{HT}^2(n): \text{every instance of HT}^2 \text{ has a solution containing } n.
\]

HT\(^2\)(0) is basically HT\(\leq 2\).

We can pass between HT\(^2\)(0) and HT\(^2\)(n) by translating the coloring by 2\(n\) and then translating the solution back by \(n\).

Thus every HT\(^2\)(n) is equivalent to HT\(\leq 2\).
HT is equivalent to the **Finite Union Theorem (FUT)**: For every coloring of the finite subsets of \mathbb{N} with finitely many colors, there are nonempty finite sets $F_0 < F_1 < F_2 < \cdots$ such that all nonempty finite unions of the F_i's have the same color.
HT is equivalent to the **Finite Union Theorem (FUT)**: For every coloring of the finite subsets of \mathbb{N} with finitely many colors, there are nonempty finite sets $F_0 < F_1 < F_2 < \cdots$ such that all nonempty finite unions of the F_i’s have the same color.

Hirst considered the following variation, motivated by a lemma of Hilbert:

HIL: For every coloring of the finite subsets of \mathbb{N} with finitely many colors, there are distinct nonempty finite sets F_0, F_1, F_2, \ldots such that all nonempty finite unions of the F_i’s have the same color.
HT is equivalent to the **Finite Union Theorem (FUT)**: For every coloring of the finite subsets of \mathbb{N} with finitely many colors, there are nonempty finite sets $F_0 < F_1 < F_2 < \cdots$ such that all nonempty finite unions of the F_i’s have the same color.

Hirst considered the following variation, motivated by a lemma of Hilbert:

HIL: For every coloring of the finite subsets of \mathbb{N} with finitely many colors, there are distinct nonempty finite sets F_0, F_1, F_2, \ldots such that all nonempty finite unions of the F_i’s have the same color.

Thm (Hirst). $\text{HIL} \iff \text{RT}^1$.

Thus HIL is computably true (though not quite provable in RCA_0).
Let P be a version of HT.

P_k is P restricted to k-colorings.
Let P be a version of HT.

P_k is P restricted to k-colorings.

Let $\lambda(n)$ be the least exponent of n base 2, and let $\mu(n)$ be the greatest exponent of n base 2.

$S \subseteq \mathbb{N}$ satisfying apartness if for all $m < n$ in S, we have $\mu(m) < \lambda(n)$.

P with apartness is P with the extra condition that the solution satisfy apartness.
Let P be a version of HT.

P_k is P restricted to k-colorings.

Let $\lambda(n)$ be the least exponent of n base 2, and let $\mu(n)$ be the greatest exponent of n base 2.

$S \subseteq \mathbb{N}$ satisfies **apartness** if for all $m < n$ in S, we have $\mu(m) < \lambda(n)$.

P with **apartness** is P with the extra condition that the solution satisfy apartness.

Thinking of HT as FUT makes apartness natural.

HT_k and HT_k with apartness are equivalent to FUT_k and hence to each other.
Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski).

1. HT^\leq_n with apartness is equivalent to FUT^\leq_n, and also for $=n$.

2. HT^\leq_2 implies HT^\leq_n with apartness.

3. HT^\leq_2 with apartness implies ACA_0.

4. HT^\leq_4 implies ACA_0.

5. For $n \geq 3$, HT^\leq_n with apartness is equivalent to ACA_0.
Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski).

1. $\text{HT}^{\leq n}_k$ with apartness is equivalent to $\text{FUT}^{\leq n}_k$, and also for $=n$.

2. HT^k_{2k} implies HT^k_{n} with apartness.
Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski).

1. $\text{HT}_{k}^{\leq n}$ with apartness is equivalent to $\text{FUT}_{k}^{\leq n}$, and also for $=n$.

2. $\text{HT}_{2k}^{\leq n}$ implies $\text{HT}_{k}^{\leq n}$ with apartness.

3. $\text{HT}_{2}^{\leq 2}$ with apartness implies ACA_0.

4. $\text{HT}_{4}^{\leq 2}$ implies ACA_0.

Thm (Dzhafarov, Jockusch, Solomon, and Westrick).

1. $\text{HT}_{2}^{\leq 3}$ implies ACA_0.

2. $\text{HT}_{2}^{\leq 2}$ implies the stable version of $\text{RT}_{2}^{\leq 2}$ over $B_{\Sigma^0_2}$.
Thm (Carlucci, Kołodzieczyk, Lepore, and Zdanowski).

1. $HT_{k}^{\leq n}$ with apartness is equivalent to $FUT_{k}^{\leq n}$, and also for $\equiv n$.

2. $HT_{2k}^{\leq n}$ implies $HT_{k}^{\leq n}$ with apartness.

3. $HT_{2}^{\leq 2}$ with apartness implies ACA_0.

4. $HT_{4}^{\leq 2}$ implies ACA_0.

5. For $n \geq 3$, $HT_{k}^{\equiv n}$ with apartness is equivalent to ACA_0.
Thm (Carlucci, Kołodziejczyk, Lepore, and Zdanowski).

1. $\text{HT}_{k}^{\leq n}$ with apartness is equivalent to $FUT_{k}^{\leq n}$, and also for $=n$.

2. $\text{HT}_{2k}^{\leq n}$ implies $\text{HT}_{k}^{\leq n}$ with apartness.

3. $\text{HT}_{2}^{\leq 2}$ with apartness implies ACA_0.

4. $\text{HT}_{4}^{\leq 2}$ implies ACA_0.

5. For $n \geq 3$, $\text{HT}_{k}^{=n}$ with apartness is equivalent to ACA_0.

Thm (Dzhafarov, Jockusch, Solomon, and Westrick).

1. $\text{HT}_{3}^{\leq 3}$ implies ACA_0.

2. $\text{HT}_{2}^{\leq 2}$ implies the stable version of RT_2^2 over BSigma_2^0.