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• In the theory of proof complexity  main characteristics of the proof are: t-

complexity (length), defined as the number of proof steps, l-complexity (size), 
defined as total number of proof symbols 

• Let 𝛷 be a proof system of any logic and 𝜑 be a tautology in this logic. We denote 

by 𝑡𝜑𝛷(𝑙𝜑𝛷) the minimal possible value of 𝑡 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑙 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) for 

all proofs of tautology 𝜑 in 𝛷. 

 

 

 

Definitions 



• For every minimal tautology 𝜑 of fixed logic by S(𝜑) is denoted the set of all 
tautologies, which are results of a substitution in 𝜑. 

Definitions 



• The proof system 𝛷 is called t-monotonous (l-monotonous), if for every non-
minimal tautology ϕ of this system there is such minimal tautology 𝜓 of this 

system such that 𝜓 belongs to S(ϕ) and 𝑡𝜑𝛷 = 𝑡𝜓𝛷 (𝑙𝜑𝛷 = 𝑙𝜓𝛷). 

 

Definitions 



• The proof system 𝛷 is called t-monotonous (l-monotonous), if for every non-
minimal tautology ϕ of this system there is such minimal tautology 𝜓 of this 

system such that 𝜓 belongs to S(ϕ) and 𝑡𝜑𝛷 = 𝑡𝜓𝛷 (𝑙𝜑𝛷 = 𝑙𝜓𝛷). 

• The proof system 𝛷 is called t-strong monotonous (l-strong monotonous), if for 

every minimal tautology ϕ of this system and for every formula 𝜓 from S(ϕ)   𝑡𝜑𝛷  ≤ 𝑡𝜓𝛷 (𝑙𝜑𝛷 ≤ 𝑙𝜓𝛷) 
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• Propositional resolution systems RС, RI, RJ for classical, intuitionistic and 

Johansson’s logics 

• Eliminations systems EС, EI, EJ based on the determinative normal forms for the 

same logics, and 

• The system GS based on generalization of splitting method  
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• Following the usual terminology we call the variables and negated variables   

literals for classical logic. The conjunct K (clause) can be represented simply as a 
set of literals (no conjunct contains a variable and its negation simultaneously). 
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• Each of the under-mentioned trivial identities for a propositional formula   𝜓 is 
called replacement-rule: 

 0&𝜓 = 0, 𝜓&0 = 0, 1&𝜓 = 𝜓, 𝜓&1 = 𝜓, 
 0 ∨ 𝜓 = 𝜓, 𝜓 ∨ 0 = 𝜓, 1 ∨ 𝜓 = 1, 𝜓 ∨ 1 = 1, 
 0 ⊃ 𝜓 = 1, 𝜓 ⊃ 0 = ¬𝜓, 1 ⊃ 𝜓 = 𝜓, 𝜓 ⊃ 1 = 1, 
 ¬0 = 1,       ¬1 = 0,        ¬¬𝜓 = 𝜓. 
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• Given  σ =  σ1 , σ2 , … , σm ⊂ Em, the conjunct Kσ = {pi1 σ1 , pi2 σ2 , … , pim σm}   is 

called φ − 1 -determinative (φ − 0 -determinative) if assigning  σj(1 ≤ j ≤ m) 

to each p𝑖𝑗  and successively using replacement-rules we obtain the value of  φ (1 

or 0) independently of the values of the remaining variables. 
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• DNF 𝐷 = {𝐾1 , 𝐾2 , … , 𝐾𝑗 } is called determinative DNF (DDNF) for φ if φ = D and 

every conjunct  𝐾𝑖  (1 ≤ 𝑖 ≤ 𝑗) is 1-determinative for φ 
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• The axioms of Elimination systems EC aren’t fixed, but for every formula 𝝋 each 
conjunct from some DDNF of 𝝋 can be considered as an axiom. 

• The  inference rule is elimination rule (𝜀-rule)  

 𝐾0 ∪ 𝑝0 ,  𝐾1 ∪ {𝑝1}𝐾0 ∪  𝐾1  
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• A finite sequence of conjuncts such that every conjunct in the sequence is one of 

the axioms of EC or is inferred from earlier conjuncts in the sequence by 𝜀-rule is 
called a proof in EC. A DNF 𝐷 = {𝐾1 , 𝐾2 , … , 𝐾𝑙 } -tautological if by using 𝜀-rule can 

be proved the empty conjunct (∅) from the axioms {𝐾1 , 𝐾2 , … , 𝐾𝑙 }. 
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• Let φ be some propositional formula and p be some of its variable.Results of 
splitting method of formula φ by variable p (splinted variable) are the formlas φ[p𝛅] for every 𝛅  from the set 0,1 , which are obtained from φ by assigning 𝛅  

to each occurrence of p and successively using replacement-rules. 
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to each occurrence of p and successively using replacement-rules. 

• The tree, which is constructed for formula 𝜑 by described method, we will call 

splitting tree of φ in future. 
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• The proof system GS can be defined as follows: for every formula φ must be 
constructed some  splitting tree and  if all tree’s leafs are labeled by  the value 1, 
then formula φ is a classical tautology  

• We can consider constant 1 as an axiom 

• Inference rule  
𝑣[𝑝0],    𝑣[𝑝1]𝑣   
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 Theorem 1. The systems  RC , RI and RJ  are t-monotonous (l-monotonous) 
but neither of them is t-strong monotonous (l-strong monotonous). 
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 Theorem 2. Each of the systems  EC , EI, EJ and GS is neither t-monotonous 
(l-monotonous) and therefore not t-strong monotonous (l-strong monotonous). 

 

 

 

Results 



Thank you for attention 
 
 


