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Introduction

Partial differential equations - I

Problem

The notion of solution for partial differential equations is not unique.

Transport equation in dimension 1{
ut(t, x) = ux(t, x), x ∈ Ω ⊆ R, t ≥ 0;
u (0, x) = u0(x), x ∈ Ω.

Solution in the sense of distributions: u(t, x) = u0(x − t).
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Introduction

Partial differential equations - II

Nonlinear diffusion - cubic-like (Plotnikov 1994){
ut(t, x) = ∆φ(u(t, x)), x ∈ Ω, t ≥ 0;
u (0, x) = u0(x), x ∈ Ω

with φ of the form

Solution in the sense of Young measures.
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Introduction

Partial differential equations - III

Nonlinear diffusion - Perona–Malik (Smarrazzo 2008){
ut(t, x) = ∆φ(u(t, x)), x ∈ Ω ⊆ Rk , t ≥ 0;
u (0, x) = u0(x), x ∈ Ω

with φ of the form

Solution: the sum of a Young measure and of a Radon measure.
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Nonstandard analysis in a nutshell

Nonstandard analysis in a nutshell

Let P(X ) be the power set of X , and define the superstructure over X as

V(X ) =
⋃
n∈N
Pn(X ).

Definition (Nonstandard universe)

A nonstandard universe is a triple (V(R),V(∗R), ∗) such that:

V(R) and V(∗R) are superstructures;
∗ : V(R)→ V(∗R) maps R properly into ∗R (i.e. R 6= ∗R);

for each first order formula φ(X1, . . . ,Xk) with bounded quantifiers
and with X1, . . . ,Xk ∈ V(R),

φ(X1, . . . ,Xn)⇐⇒ φ(∗X1, . . . ,
∗Xn).
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Grid functions

Grid functions

Definition

Let N0 ∈ ∗N be an infinite hypernatural number. Set N = N0!, ε = 1/N
and define X = {nε : −N2 ≤ n ≤ N2}.

Proposition

Let Ω ⊆ Rk be an open set, and define ΩX = ∗Ω ∩ Xk . Then ◦ΩX = Ω.

Definition (Grid functions)

The algebra of grid functions defined over ΩX is

G(ΩX) = {f : ΩX → ∗R and f is internal}.
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Grid functions

Grid derivative

Definition (Grid derivative)

For a function f ∈ G(ΩX), we define the grid derivative Di f as

Di f (x) =
f (x + εei )− f (x)

ε
.

If α = (α1, . . . , αk) is a multi-index,

Dαf (x) = Dα1
1 . . .Dαk

k f (x)
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Grid functions

Grid functions and distributions

Theorem (B. 2017)

For every distribution T ∈ D ′(Ω) there exists a grid function f such that

◦

∑
x∈ΩX

f (x) ∗ϕ(x)

 = 〈T , ϕ〉D(Ω).

In this case, we will say that [f ] = T.
Moreover, the grid derivative represents the distributional derivative, i.e.

if [f ] = T, then [Df ] = T ′.
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Grid functions

Grid functions and Young measures

Theorem (B. 2017)

For every grid function f there exists a parametrized measure ν over Ω
such that, if we define g(ν) : Ω→ R by

g(ν)(x) =

(∫
R
gdνx

)
for every x ∈ Ω,

then [∗g(f )] = g(ν).
In the above formulas, g ∈ C 0(R) and lim|x |→∞ g(x) = 0.

Proposition (Cutland 1986 & B. 2017)

For any f ∈ G(ΩX) such that ‖f ‖∞ is finite, ν is a Young measure and [f ]
is its barycentre
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The existence result

Preliminary definitions

Differential operators

Let
P(x1, . . . , xk) =

∑
|α|≤d

aαx
α1
1 . . . xαk

k ,

be a polynomial in k variables with aα ∈ C∞([0,+∞)× Ω).
Define

P∂ = P

(
∂

∂x1
, . . . ,

∂

∂xk

)
=
∑
|α|≤d

aα
∂α1

∂xα1
1

. . .
∂αk

∂xαk
k

and
PD = P (D1, . . . ,Dk) =

∑
|α|≤d

∗aαDα1
1 . . .Dαk

k .
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The existence result

The existence result - I

The nonstandard existence result (B. 2018)

Let P,P1, . . . ,Pj be polynomials in k variables with coefficients in
C∞([0,+∞)× Ω). Let also{

ut = P∂f (P1,∂u, . . . ,Pj ,∂u) in Ω ⊆ Rk ,
u(0, x) = u0(x),

(1)

and {
ut = PD

∗f (P1,Du, . . . ,Pj ,Du) in ΩX,
u(0, x) = ∗u0(x).

(2)

If f is locally Lipschitz, then problem (2) has a unique solution
u ∈ ∗C 1([0,T ],G(ΩX)).
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The existence result

The existence result - II

Existence of a real solution (B. 2018)

Let u be a solution to problem (2) and let ν i be the parametrized measure
corresponding to Pi ,Du, i = 1, . . . , j .
Then [u] and ν1, . . . , ν j satisfy∫ T

0
〈[u], ϕt〉D(Ω) + 〈f (ν1, . . . , ν j),P†∂ϕ〉D(Ω)dt +

+

∫
Ω
u0(x)ϕ(0, x)dx = 0.

for all ϕ ∈ C 1([0,T ],C∞(Ω)) with ϕ(T , x) = 0 for all x ∈ Ω
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Selected examples

The grid function formulation for the transport equation

The grid function formulation{
ut = D(u) in ΩX
u(0, x) = u0(x).

The solution to this problem is u(t) = e−tDu0(x) for every (distributional,
measure-valued, . . . ) initial data u0.

Meaning of the solution

This is a generalization of the equality e−tD f (x) = f (x − t) for analytic
functions.
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Selected examples

The grid function formulation for the nonlinear diffusion

The grid function formulation

We discretize the Laplacian by using the grid derivative:

∆X
∗φ(u(x , t)) =

k∑
i=1

DiDi (
∗φ(u(x − εei , t))),

and impose Neumann boundary conditions by a first order finite-difference
approximation.
We obtain the hyperfinite system of ODEs{

ut = ∆X
∗φ(u), x ∈ ΩX, t ≥ 0;

u (0, x) = ∗u0(x), x ∈ ΩX,
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Selected examples

Properties of the grid solution

Existence and uniqueness of the grid solution (B. 2017)

The grid function formulation has a unique global solution
u : ∗R≥0 → ΩX. Moreover, the mass of the solution is preserved:

‖u(t, x)‖1 = ‖∗u0‖1 for all t ≥ 0.

Coherence with the measure-valued solutions (B. 2017)

[u] is a non-negative Radon measure, and [∗φ(u)] ∈ L∞(Ω× [0,T ]) for all
T ≥ 0. Moreover, it satisfies an entropy condition that characterizes
admissible solutions to the original problem.
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Conclusions

Conclusions

The strength of nonstandard analysis

None of this would be possible if the function ∗ did not preserve first order
properties!

Perspectives for future research

Study classically ill-posed PDEs with grid functions (relevant also for
many mathematical models of physical phenomena);

develop a nonlinear theory of distributions;

study the relations between grid functions, Colombeau’s algebras,
algebras of asymptotic functions, and spaces of ultrafunctions.
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Conclusions
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Extras

Young measures

Definition (Young 1937, . . . )

A Young measure over Ω is a measurable function ν : Ω→ P(R). The
“composition” between a function g ∈ C 0

b (R) and ν is the function
defined a.e. by

g(ν)(x) =

∫
R
gdνx .

Theorem (Prokhorov 1956, Ball 1989, . . . )

Let {zn}n∈N be a sequence of measurable functions, uniformly bounded in
Lp(Ω) for some 1 ≤ p ≤ ∞. Then there exists a Young measure ν such
that

lim
n→∞

∫
Ω
g(zn(x))ϕ(x)dx =

∫
Ω

(∫
R
gdνx

)
ϕ(x)dx

for all g ∈ C 0
b (R) and for all ϕ ∈ L1(Ω).
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Extras

Grid functions and Young measures

Theorem

For every f ∈ G(ΩX), there exists a measurable ν : Ω→M(R) such that

◦

∑
x∈ΩX

∗g(f (x)) ∗ϕ(x)

 =

∫
Ω

(∫
R
gdνx

)
ϕ(x)dx

for all g ∈ C 0
b (R) and for all ϕ ∈ C 0(R). Moreover, for all x ∈ Ω and for

all Borel A ⊆ R, 0 ≤ νx(A) ≤ 1.

Proposition (Cutland 1986 & B. 2017)

For every f ∈ G(ΩX) such that ‖f ‖∞ is finite, ν is a Young measure and
[f ] is its barycentre
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