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Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group

(to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined.

Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:
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There is a theory where (Ĩnv(U),⊗) is not well-defined. Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
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Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.
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Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.
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Domination
Definition (Domination preorder on Sinv
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Example (Random Graph, or a set with no structure (degenerate domination))
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.



Introduction Domination Results and Questions

Is ⊗ a Congruence with respect to ∼D?
Or: is (Ĩnv(U),⊗) well-defined?

It can be shown that if p0 ≥D p1, then p0 ⊗ q ≥D p1 ⊗ q.

Question
Does q0 ≥D q1 imply p⊗ q0 ≥D p⊗ q1?

Fact
If for T the answer to the question above is “yes”, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid,
• the neutral element (and minimum) is the (unique) class of realised types, and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).
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Introduction Domination Results and Questions

Examples
(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here )
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here )
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here )
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.
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(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here )
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Random Graph (see here )
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.



Introduction Domination Results and Questions

Main Results

Theorem (M.)
There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ⊗. More

Theorem (M.)
If p0 ≥D p1 and p0 is definable/finitely satisfiable/generically stable/weakly
orthogonal to q, then so is p1. More

Theorem (M.)
There is a notion of stationary domination, implied by T being stable or binary,
which guarantees (Ĩnv(U),⊗) to be well-defined. More
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Questions/Work in Progress
Questions

1. Known counterexamples use IP2 heavily. Is Ĩnv(U) well-defined under NIP?

2. If so, is Ĩnv(U) commutative? The answer is no for Inv(U). More

3. Dependence of Ĩnv(U) on U in the stable non-thin and NIP unstable cases?
• IP case is clear: cardinality grows.
• Stable thin case is clear: multidimensionality. More

4. Can Ĩnv(U) be finite? (T must be NIP unstable)
5. What does the smallest ⊗-congruence generated by ∼D look like?
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More examples: Branches

Example
Let T be the theory in the language {Pσ | σ ∈ 2<ω} asserting that every point
belongs to every Pη�n for exactly one η ∈ 2ω. Then Ĩnv(U) ∼=

⊕
2ℵ0 N.

Basically, Ĩnv(U) here is counting how many new points are in a “branch”.
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More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for Ĩnv(U) looks like this:
• a single ∼D-class J0K for realised types
• if pa(x) := {E(x, a)} ∪ {x /∈ U}, then JpaK = JpbK if and only if � E(a, b);
corresponds to new points in an existing equivalence class

• a single ∼D-class JpgK, where pg := {¬E(x, a) | a ∈ U}; corresponds to new
equivalence classes.

The product adds new points/new classes. So, if U has κ equivalence classes,

Ĩnv(U) ∼= N⊕
⊕
κ

N
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More Examples: Cross-cutting Equivalence Relations
Tn := n generic equivalence relations Ei; intersection of classes of different Ei
always infinite. Here (Ĩnv(U),⊗) is generated by:
• a single ∼D-class J0K for realised types
• if pa(x) := {Ei(x, a) | i < n} ∪ {x /∈ U}, then JpaK = JpbK if and only if
�
∧
i<nEi(a, b); corresponds to new points in Ei-relation with a for all i

• For each i < n, a class JpiK saying x is in a new Ei class, but in existing
Ej-classes for j 6= i (does not matter which)

So
Ĩnv(U) ∼=

∏
i<n

N⊕
⊕
κ

N

Why
∏

instead of
⊕

? If we allow, say, ℵ0 equivalence relations, then

Ĩnv(U) ∼=
bdd∏
i<ℵ0

N⊕
⊕
κ

N

Back
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Other Notions
One can define a finer equivalence relation:

Definition
p ≡D q is defined as p ∼D q, but by asking the same r to work in both directions:
p ∪ r ` q and q ∪ r ` p.
Another notion classically studied is (see e.g. [Poi]):

Definition
p ≥RK q iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) ∪ {ϕ(x, y)} ` q(y).
But even there, modulo ∼RK it is not true that every type decomposes as a product
of ≥RK-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).
A classical example where ≥D differs from ≥RK: generic equivalence relation with a
bijection s such that ∀x E(x, s(x)). Back
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Hrushovski’s Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P , Inv(U) is not commutative.

Proof idea.
Let p(x) := {P (x)} ∪ {x > U} and q(y) := {¬P (x)} ∪ {y > U}. Then p, q do not
commute, even modulo ≡D (but they do modulo ∼D).
The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if
r ` x0 < y0 < y1 < x1, knowing that y1 > U does not imply x0 > U.
In this case, for each cut C there are generators JpC,P K and JpC,¬P K, with relations
• JpC,P K⊗ JpC,P K = JpC,¬P K⊗ JpC,P K = JpC,P K
• (same relations swapping P and ¬P )
• JpC0,−K⊗ JpC1,−K = JpC1,−K⊗ JpC0,−K whenever C0 6= C1.
Back
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Stable Case

In a stable theory, ≤D, ∼D and ≡D can be expressed in terms of forking:

Definition (See e.g. [Pil])
a .E b iff, for all c,

a |̂
E

c =⇒ b |̂
E

c

p .E q (p dominates q over E) iff there are a � p and b � q such that a .E b
p ./E q (p and q are domination equivalent) iff p .E q .E p, i.e. there are
a︸︷︷︸
�p

.E b︸︷︷︸
�q

.E c︸︷︷︸
�p

p
.
=E q (p and q are equidominant over E) iff there are a � p and b � q such that

a .E b .E a

These are well-behaved with non-forking extensions: we can drop E .
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Comparison

Proposition (T stable)
The previous definitions of ≤D= /, ∼D=./ and ≡D=

.
=.

Remark
The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ∼D coincides with ≡D.

Exception: in DLO with a predicate, (Inv(U),⊗) is not commutative, while
(Ĩnv(U),⊗) is (in fact, it is the same as in DLO).

Fact (See [Wag, Example 5.2.9])
Even in the stable case, ∼D and ≡D are generally different.
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Classical Results

In the thin case (generalises superstable), this is classical (e.g. [Pil]):

Theorem (T thin)
Ĩnv(U) is a direct sum of copies of N.
If T is moreover superstable, (Ĩnv(U),⊗) is generated by {JpK | p regular}.

Superstability (even just thinness) implies that ≡D and ∼D coincide.

The behaviour of ≥D in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go). This seems
to hint that, maybe, o-minimal theories are a good context to investigate.
Also, some suitable generalisation of the Omitting Types Theorem would help.

Back
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(Non-multi)Dimensionality

At least in the superstable case, independence of Ĩnv(U) on U already had a name:

Definition
T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) ∅.
If U0 ≺+ U1 one has a map e : Ĩnv(U0)→ Ĩnv(U1).

Proposition (T thin)
e surjective ⇐⇒ T dimensional.

Question
Is this true under stability? It boils down to the image of e being downward closed.
I suspect this should follow from classical results. Back
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Generically Stable Part

Proposition
q ≤D p definable/finitely satisfiable/generically stable =⇒ so is q.
As generically stable types commute with everything, in any theory the monoid
generated by their classes is well-defined. (Warning: p generically stable 6⇒ p⊗ p generically stable)

Hope
At least in special cases, get decompositions similar to Ĩnv(U) ∼=

g.s. part︷ ︸︸ ︷
Ĩnv(k)× Ĩnv(Γ).

Probably one should really work in T eq:

Example
In T = DLO+equivalence relation with (no finite classes and infinitely many) dense classes,
Ĩnv(U) grows when passing to T eq, which has more generically stable types.

Question
How can the generically stable part look like?



Appendix

Interaction with Weak Orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p ∪ q is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: q ⊥w p0 ≥D p1 =⇒ q ⊥w p1.
In particular if q ⊥w p ≥D q then q is realised.

Question
Under which conditions if p 6⊥wq then they dominate a common nonzero class?
Known:
• Superstable (or thin) is enough. See here

• Fails in the Random Graph.
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Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider

pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

Back
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Consider this action restricted to Aut(U/A).

Example
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Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A)

: for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
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Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||

Fact
⊗ is associative. It is commutative if and only if T is stable.
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Some Sufficient Conditions

Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1 is implied by any of the following:
• q1 algebraic over q0: every c � q1 is algebraic over some b � q0. E.g. q1 = f∗q0
for some definable function f . Reason: {c | (b, c) � r} does not grow with U.

• T is binary:
⋃

tp(aiaj) ` tp(a1, . . . , an): few questions about a � p and c � q1.
• Or even weakly binary: tp(a/U) ∪ tp(b/U) ∪ tp(ab/M) � tp(ab/U), e.g. theories
that become binary after naming constants, like a circular order.

• T is stable.
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A General Sufficient Condition
Any condition in the Proposition implies that if
there is some r ∈ Syz(M) witnessing q0(y) ≥D

q1(z), then there is one such that, in addition, if
• b, c ∈ U1

+� U are such that (b, c) � q0 ∪ r,
• p ∈ Sinv(U,M) and a � p(x) | U1,
• r[p] := tpxyz(abc/M) ∪ {x = w}.

then p⊗q0∪r[p] ` p⊗q1. We call this stationary
domination.

Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1
holds if

• q1 is algebraic over q0, or

• T is weakly binary, or

• T is stable.

Open Problems

• Understand if this holds under NIP.
• Understand if this is equivalent to good definition of Ĩnv(U).

Back
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A Counterexample
(with SOP and IP2)

Idea:

fiber over a 2-coloured

DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back
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G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••
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?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.
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Appendix

Another Counterexample
Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph R2 yields a supersimple
counterexample of SU-rank 2; forking is a |̂

C

b ⇐⇒ (a ∩ b ⊆ C) ∧ (πa ∩ πb ⊆ πC).

R3(x0, x1, x2)→
∨
σ∈S3

(
R2(πxσ0, πxσ1) ∧R2(πxσ0, πxσ2) ∧ ¬R2(πxσ1, πxσ2)

(exactly two edges between πx0, πx1, πx2)

)
q0(y) := {¬R2(y, a) | a ∈ U}
q1(z) := {¬R2(πz, a) | a ∈ U}
r(y, z) := {y = πz} ∪ . . .
p(x) := {R2(πx, a) | a ∈ U}
∪ {¬R3(x, a, b) | a, b ∈ U}

U

• •••

•
y

•
z

•
x

Hypergraph
sort

Graph sort

q0 ∪ r ` q1: no hyperedges to decide. Same problem: p⊗ q0(x, y) 6≥D p⊗ q1(t, z).
Back



Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back
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Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪ . . ..

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)
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Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back
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Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO).

Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial). Back
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• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial).

Back



Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
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