
Introduction Domination Results and Questions

Product of Invariant Types Modulo Domination-Equivalence

Rosario Mennuni

University of Leeds

PhD project supervised by H.D. Macpherson and V. Mantova

Logic Colloquium
Prague, 15th August 2019

Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group

(to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined.

Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:

Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group

(to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined.

Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:

Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group

(to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined.

Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:

Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group

(to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined.

Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:

Introduction Domination Results and Questions

Overview
Motivation and Main Result

T complete, κ large enough, U a κ-monster. Small = of size < κ.

In [HHM] to U is associated (Ĩnv(U),⊗) := (Sinv(U),⊗)/ ∼D

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, Ĩnv(U) ∼= Ĩnv(k)× Ĩnv(Γ). k := residue field, Γ := value group (to be precise, they use Inv(U))

Theorem (M.)
There is a theory where (Ĩnv(U),⊗) is not well-defined. Nor is Inv(U).

In this talk:
• what is Ĩnv(U),
• some examples of Ĩnv(U),
• main results.

Slides here:

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

| | | | | ||||||||||
pA+︸︷︷︸

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y)

| | | | | ||||||||||
()pA+

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y)

| | | | | ||||||||||
()pA+

|
y

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Invariant Types
Canonical extension and product

Definition (p ∈ S(U), A ⊆ U small, B 6⊆ U arbitrary)
p is A-invariant iff whether p(x) ` ϕ(x; d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p ∈ S(U) is invariant iff it is A-invariant for some small A ⊂ U.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Using this, define ϕ(x, y; d) ∈ p(x)⊗ q(y)
def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Fact
⊗ is associative. ⊗ commutative ⇐⇒ T stable. Then it’s the usual (a, b) � p⊗ q ⇐⇒ a |̂

U

b.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)

≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|
y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)

≥D

tp(y1 > y0 > U)

(“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph)
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Domination
Definition (Domination preorder on Sinv

<ω(U))
px ≥D qy iff there are a small A ⊂ U and r ∈ Sxy(A) such that:

p, q are A-invariant, r ⊇ (p � A) ∪ (q � A), and p(x) ∪ r(x, y) ` q(y)

Domination equivalence p ∼D q means p ≥D q ≥D p, and Ĩnv(U) := Sinv
<ω(U)/ ∼D.

Equidominance p ≡D q means p ≥D q ≥D p, witnessed by the same r and Inv(U) := Sinv
<ω(U)/ ≡D.

For T stable, it’s the usual p ≥D q ⇐⇒ ∃a � p, b � q ∀d d |̂
U

a =⇒ d |̂
U

b.

Example (DLO, all types below are ∅-invariant)
tp(x > U)≥D tp(y1 > y0 > U) (“glue x and y0”, i.e. r := {y0 = x} ∪ . . .)

x
|

y0

|
y1

|

y0 = x
|

y1

|

Example (Random Graph, or a set with no structure (degenerate domination))
p ≥D q ⇐⇒ p ⊇ q after renaming/duplicating variables and ignoring realised ones.

Introduction Domination Results and Questions

Is ⊗ a Congruence with respect to ∼D?
Or: is (Ĩnv(U),⊗) well-defined?

It can be shown that if p0 ≥D p1, then p0 ⊗ q ≥D p1 ⊗ q.

Question
Does q0 ≥D q1 imply p⊗ q0 ≥D p⊗ q1?

Fact
If for T the answer to the question above is “yes”, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid,
• the neutral element (and minimum) is the (unique) class of realised types, and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Introduction Domination Results and Questions

Is ⊗ a Congruence with respect to ∼D?
Or: is (Ĩnv(U),⊗) well-defined?

It can be shown that if p0 ≥D p1, then p0 ⊗ q ≥D p1 ⊗ q.

Question
Does q0 ≥D q1 imply p⊗ q0 ≥D p⊗ q1?

Fact
If for T the answer to the question above is “yes”, then
• (Ĩnv(U),⊗,≤D) is an ordered monoid,
• the neutral element (and minimum) is the (unique) class of realised types, and
• nothing else is invertible (p⊗ q realised =⇒ p, q both realised!).

Introduction Domination Results and Questions

Examples
(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

Introduction Domination Results and Questions

Examples
(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

Introduction Domination Results and Questions

Examples
(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

Introduction Domination Results and Questions

Examples
(In all of these (Ĩnv(U),⊗) equals (Inv(U),⊗) and is well-defined)

T strongly minimal (see here)
(Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
For T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+).

T superstable (thin is enough)
By classical results Ĩnv(U) ∼=

⊕
i<λ(N,+,≤), for some λ = λ(U).

DLO (see here)
(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆).
Invariant cut = small cofinality on exactly one side.

Random Graph (see here)
∼D is degenerate, (Ĩnv(U),⊗) resembles (Sinv

<ω(U),⊗), e.g. it is noncommutative.

Introduction Domination Results and Questions

Main Results

Theorem (M.)
There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ⊗. More

Theorem (M.)
If p0 ≥D p1 and p0 is definable/finitely satisfiable/generically stable/weakly
orthogonal to q, then so is p1. More

Theorem (M.)
There is a notion of stationary domination, implied by T being stable or binary,
which guarantees (Ĩnv(U),⊗) to be well-defined. More

Introduction Domination Results and Questions

Main Results

Theorem (M.)
There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ⊗. More

Theorem (M.)
If p0 ≥D p1 and p0 is definable/finitely satisfiable/generically stable/weakly
orthogonal to q, then so is p1. More

Theorem (M.)
There is a notion of stationary domination, implied by T being stable or binary,
which guarantees (Ĩnv(U),⊗) to be well-defined. More

Introduction Domination Results and Questions

Main Results

Theorem (M.)
There is a ternary, ω-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ⊗. More

Theorem (M.)
If p0 ≥D p1 and p0 is definable/finitely satisfiable/generically stable/weakly
orthogonal to q, then so is p1. More

Theorem (M.)
There is a notion of stationary domination, implied by T being stable or binary,
which guarantees (Ĩnv(U),⊗) to be well-defined. More

Introduction Domination Results and Questions

Questions/Work in Progress
Questions

1. Known counterexamples use IP2 heavily. Is Ĩnv(U) well-defined under NIP?

2. If so, is Ĩnv(U) commutative? The answer is no for Inv(U). More

3. Dependence of Ĩnv(U) on U in the stable non-thin and NIP unstable cases?
• IP case is clear: cardinality grows.
• Stable thin case is clear: multidimensionality. More

4. Can Ĩnv(U) be finite? (T must be NIP unstable)
5. What does the smallest ⊗-congruence generated by ∼D look like?

Slides Thanks for listening! Paper

Introduction Domination Results and Questions

Questions/Work in Progress
Questions

1. Known counterexamples use IP2 heavily. Is Ĩnv(U) well-defined under NIP?

2. If so, is Ĩnv(U) commutative? The answer is no for Inv(U). More

3. Dependence of Ĩnv(U) on U in the stable non-thin and NIP unstable cases?
• IP case is clear: cardinality grows.
• Stable thin case is clear: multidimensionality. More

4. Can Ĩnv(U) be finite? (T must be NIP unstable)
5. What does the smallest ⊗-congruence generated by ∼D look like?

Slides Thanks for listening! Paper

Appendix

Bibliography
this is not a proper bibliography, it’s just a list of the sources mentioned in these slides

[HHM] D. Haskell, E. Hrushovski and D. Macpherson,
Stable Domination and Independence in Algebraically Closed Valued Fields,
Lecture Notes in Logic 30, Cambridge University Press 2007.

[Men] R. Mennuni,
Product of Invariant Types Modulo Domination-Equivalence,
Archive for Mathematical Logic, to appear.

[Pil] A. Pillay,
Geometric Stability Theory,
Oxford Logic Guides 32, Oxford University Press 1996.

[Poi] B. Poizat,
A Course in Model Theory,
Universitext, Springer 2000.

[Tan] P. Tanović,
Generically stable regular types,
The Journal of Symbolic Logic, 80:308–321 (2015).

[Wag] F.O. Wagner,
Simple Theories,
Mathematics and Its Applications 503, Kluwer Academic Publishers 2000.

Appendix

More examples: Branches

Example
Let T be the theory in the language {Pσ | σ ∈ 2<ω} asserting that every point
belongs to every Pη�n for exactly one η ∈ 2ω. Then Ĩnv(U) ∼=

⊕
2ℵ0 N.

Basically, Ĩnv(U) here is counting how many new points are in a “branch”.

Appendix

More Examples: Generic Equivalence Relation

Equivalence relation E with infinitely many infinite classes (and no finite classes).
A set of generators for Ĩnv(U) looks like this:
• a single ∼D-class J0K for realised types
• if pa(x) := {E(x, a)} ∪ {x /∈ U}, then JpaK = JpbK if and only if � E(a, b);
corresponds to new points in an existing equivalence class

• a single ∼D-class JpgK, where pg := {¬E(x, a) | a ∈ U}; corresponds to new
equivalence classes.

The product adds new points/new classes. So, if U has κ equivalence classes,

Ĩnv(U) ∼= N⊕
⊕
κ

N

Appendix

More Examples: Cross-cutting Equivalence Relations
Tn := n generic equivalence relations Ei; intersection of classes of different Ei
always infinite. Here (Ĩnv(U),⊗) is generated by:
• a single ∼D-class J0K for realised types
• if pa(x) := {Ei(x, a) | i < n} ∪ {x /∈ U}, then JpaK = JpbK if and only if
�
∧
i<nEi(a, b); corresponds to new points in Ei-relation with a for all i

• For each i < n, a class JpiK saying x is in a new Ei class, but in existing
Ej-classes for j 6= i (does not matter which)

So
Ĩnv(U) ∼=

∏
i<n

N⊕
⊕
κ

N

Why
∏

instead of
⊕

? If we allow, say, ℵ0 equivalence relations, then

Ĩnv(U) ∼=
bdd∏
i<ℵ0

N⊕
⊕
κ

N

Back

Appendix

Other Notions
One can define a finer equivalence relation:

Definition
p ≡D q is defined as p ∼D q, but by asking the same r to work in both directions:
p ∪ r ` q and q ∪ r ` p.
Another notion classically studied is (see e.g. [Poi]):

Definition
p ≥RK q iff every model realising p realises q.
This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) ∪ {ϕ(x, y)} ` q(y).
But even there, modulo ∼RK it is not true that every type decomposes as a product
of ≥RK-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).
A classical example where ≥D differs from ≥RK: generic equivalence relation with a
bijection s such that ∀x E(x, s(x)). Back

Appendix

Hrushovski’s Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P , Inv(U) is not commutative.

Proof idea.
Let p(x) := {P (x)} ∪ {x > U} and q(y) := {¬P (x)} ∪ {y > U}. Then p, q do not
commute, even modulo ≡D (but they do modulo ∼D).
The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if
r ` x0 < y0 < y1 < x1, knowing that y1 > U does not imply x0 > U.
In this case, for each cut C there are generators JpC,P K and JpC,¬P K, with relations
• JpC,P K⊗ JpC,P K = JpC,¬P K⊗ JpC,P K = JpC,P K
• (same relations swapping P and ¬P)
• JpC0,−K⊗ JpC1,−K = JpC1,−K⊗ JpC0,−K whenever C0 6= C1.
Back

Appendix

Stable Case

In a stable theory, ≤D, ∼D and ≡D can be expressed in terms of forking:

Definition (See e.g. [Pil])
a .E b iff, for all c,

a |̂
E

c =⇒ b |̂
E

c

p .E q (p dominates q over E) iff there are a � p and b � q such that a .E b
p ./E q (p and q are domination equivalent) iff p .E q .E p, i.e. there are
a︸︷︷︸
�p

.E b︸︷︷︸
�q

.E c︸︷︷︸
�p

p
.
=E q (p and q are equidominant over E) iff there are a � p and b � q such that

a .E b .E a

These are well-behaved with non-forking extensions: we can drop E .

Appendix

Comparison

Proposition (T stable)
The previous definitions of ≤D= /, ∼D=./ and ≡D=

.
=.

Remark
The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ∼D coincides with ≡D.

Exception: in DLO with a predicate, (Inv(U),⊗) is not commutative, while
(Ĩnv(U),⊗) is (in fact, it is the same as in DLO).

Fact (See [Wag, Example 5.2.9])
Even in the stable case, ∼D and ≡D are generally different.

Appendix

Classical Results

In the thin case (generalises superstable), this is classical (e.g. [Pil]):

Theorem (T thin)
Ĩnv(U) is a direct sum of copies of N.
If T is moreover superstable, (Ĩnv(U),⊗) is generated by {JpK | p regular}.

Superstability (even just thinness) implies that ≡D and ∼D coincide.

The behaviour of ≥D in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go). This seems
to hint that, maybe, o-minimal theories are a good context to investigate.
Also, some suitable generalisation of the Omitting Types Theorem would help.

Back

Appendix

(Non-multi)Dimensionality

At least in the superstable case, independence of Ĩnv(U) on U already had a name:

Definition
T is (non-multi)dimensional iff no type is orthogonal to (every type that does not fork over) ∅.
If U0 ≺+ U1 one has a map e : Ĩnv(U0)→ Ĩnv(U1).

Proposition (T thin)
e surjective ⇐⇒ T dimensional.

Question
Is this true under stability? It boils down to the image of e being downward closed.
I suspect this should follow from classical results. Back

Appendix

Generically Stable Part

Proposition
q ≤D p definable/finitely satisfiable/generically stable =⇒ so is q.
As generically stable types commute with everything, in any theory the monoid
generated by their classes is well-defined. (Warning: p generically stable 6⇒ p⊗ p generically stable)

Hope
At least in special cases, get decompositions similar to Ĩnv(U) ∼=

g.s. part︷ ︸︸ ︷
Ĩnv(k)× Ĩnv(Γ).

Probably one should really work in T eq:

Example
In T = DLO+equivalence relation with (no finite classes and infinitely many) dense classes,
Ĩnv(U) grows when passing to T eq, which has more generically stable types.

Question
How can the generically stable part look like?

Appendix

Interaction with Weak Orthogonality
Definition
p(x) is weakly orthogonal to q(y) iff p ∪ q is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: q ⊥w p0 ≥D p1 =⇒ q ⊥w p1.
In particular if q ⊥w p ≥D q then q is realised.

Question
Under which conditions if p 6⊥wq then they dominate a common nonzero class?
Known:
• Superstable (or thin) is enough. See here

• Fails in the Random Graph.

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider

pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

pb+︸︷︷︸

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b}

and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b} and let
f ∈ Aut(U/A) be such that f(b) = c.

Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

|
c

f

Back

Appendix

Action on Type Space

f ∈ Aut(U) acts on p ∈ S(U) by changing parameters in formulas:

f · p := {ϕ(x, f(d)) | ϕ(x, d) ∈ p}

Consider this action restricted to Aut(U/A).

Example
T = DLO, consider pb+(x) := {x < d | d > b} ∪ {x > d | d ≤ b} and let
f ∈ Aut(U/A) be such that f(b) = c. Then f · pb+ = pc+ .

| | | | | |||||||||| |
b

()pb+

|
c

f

()pc+
f

Back

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A)

: for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
pA+︸︷︷︸

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A}

“ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

Appendix

Invariant Extension
How to canonically extend an invariant type to bigger sets

Recall: p ∈ Sinvx (U, A) ⇐⇒ whether p(x) ` ϕ(x; d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p ∈ Sinv

x (U, A) has a unique extension (p | UB) ∈ Sinv
x (UB,A): for tuples d from UB

ϕ(x; d) ∈ (p | UB)
def⇐⇒ for d̃ ∈ U such that d ≡A d̃, we have ϕ(x; d̃) ∈ p.

Example (T = DLO, A small)
pA+(x) := {x < d | d > A} ∪ {x > d | d 6> A} “ = ” (pA+ | UB)(x) (now d ∈ UB)

| | | | | ||||||||||
()pA+

|
)(

x

(pA+ | B)

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
pA+︸︷︷︸

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
()pA+

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y)

` x < y

| | | | | ||||||||||
()pA+

|
y

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Product of Invariant Types

Definition (p invariant)
ϕ(x, y; d) ∈ p(x)⊗ q(y)

def⇐⇒ ϕ(x; b, d) ∈ p | Ub (b � q)

Example
(pA+ (x) := {x < d | d > A} ∪ {x > d | d 6> A}) pA+(x)⊗ pA+(y) ` x < y

| | | | | ||||||||||
()pA+

|
y

|
x

Fact
⊗ is associative. It is commutative if and only if T is stable.

Appendix

Some Sufficient Conditions

Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1 is implied by any of the following:
• q1 algebraic over q0: every c � q1 is algebraic over some b � q0. E.g. q1 = f∗q0
for some definable function f . Reason: {c | (b, c) � r} does not grow with U.

• T is binary:
⋃

tp(aiaj) ` tp(a1, . . . , an): few questions about a � p and c � q1.
• Or even weakly binary: tp(a/U) ∪ tp(b/U) ∪ tp(ab/M) � tp(ab/U), e.g. theories
that become binary after naming constants, like a circular order.

• T is stable.

Appendix

A General Sufficient Condition
Any condition in the Proposition implies that if
there is some r ∈ Syz(M) witnessing q0(y) ≥D

q1(z), then there is one such that, in addition, if
• b, c ∈ U1

+� U are such that (b, c) � q0 ∪ r,
• p ∈ Sinv(U,M) and a � p(x) | U1,
• r[p] := tpxyz(abc/M) ∪ {x = w}.

then p⊗q0∪r[p] ` p⊗q1. We call this stationary
domination.

Proposition
q0 ≥D q1 =⇒ p⊗ q0 ≥D p⊗ q1
holds if

• q1 is algebraic over q0, or

• T is weakly binary, or

• T is stable.

Open Problems

• Understand if this holds under NIP.
• Understand if this is equivalent to good definition of Ĩnv(U).

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea:

fiber over a 2-coloured

DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea:

fiber over a

2-coloured DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO

; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on

some

triples of fibers:

R3(x, z, w)→
(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)

(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”

q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”

r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .

p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide.

But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide.

But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•

?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?

No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!

Supersimple version here . Also works for a number of variations of ∼D.

Back

Appendix

A Counterexample
(with SOP and IP2)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(x, z, w)→

(
G(πx) < ¬G(πz) < G(πw)

)
(for some permutation of x, z, w)

q0(y) := “¬G(y) < −∞”
q1(z) := “¬G(πz) < −∞”
r(y, z) := {y = πz} ∪ . . .
p(x) := “G(πx) < −∞”,
∪ {¬R3(x, a, b) | a, b ∈ U}

• ••

• • •

X

•
y

•
z

•
z

•
x

•?
?

?
?
?

?

q0 ∪ r ` q1: no hyperedges to decide. But does p⊗ q0(x, y) ≥D p⊗ q1(t, z)?
No: even with x = t no small type can decide all hyperedges involving x and z!
Supersimple version here . Also works for a number of variations of ∼D. Back

Appendix

Another Counterexample
Ternary, supersimple, ω-categorical, can be tweaked to have degenerate algebraic closure

Replacing the densely coloured DLO with a random graph R2 yields a supersimple
counterexample of SU-rank 2; forking is a |̂

C

b ⇐⇒ (a ∩ b ⊆ C) ∧ (πa ∩ πb ⊆ πC).

R3(x0, x1, x2)→
∨
σ∈S3

(
R2(πxσ0, πxσ1) ∧R2(πxσ0, πxσ2) ∧ ¬R2(πxσ1, πxσ2)

(exactly two edges between πx0, πx1, πx2)

)
q0(y) := {¬R2(y, a) | a ∈ U}
q1(z) := {¬R2(πz, a) | a ∈ U}
r(y, z) := {y = πz} ∪ . . .
p(x) := {R2(πx, a) | a ∈ U}
∪ {¬R3(x, a, b) | a, b ∈ U}

U

• •••

•
y

•
z

•
x

Hypergraph
sort

Graph sort

q0 ∪ r ` q1: no hyperedges to decide. Same problem: p⊗ q0(x, y) 6≥D p⊗ q1(t, z).
Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Strongly Minimal Theories
(Ĩnv(U),⊗) well-defined by stability

Example
If T is strongly minimal, (Ĩnv(U),⊗,≤D) ∼= (N,+,≤).
(for T stable, Ĩnv(U) ∼= N⇔ T is unidimensional, e.g. countable and ℵ1-categorical, or Th(Z,+))

In this case, Ĩnv(U) is basically “counting the dimension”. E.g.: in ACF0 we have
p(x1, . . . , xn) ∼D q(y1, . . . , ym) ⇐⇒ tr deg(x/U) = tr deg(y/U).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a, b) � p⊗ q, then
dim(a/Ub) = dim(a/U), and in strongly minimal theories

dim(ab/U) = dim(b/U) + dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results Ĩnv(U) ∼=
⊕
i<λ(N,+,≤), for some λ.

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).

• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y0

|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y0

|
y1

|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y1

|
y0=x
|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Dense Linear Orders
(Ĩnv(U),⊗) well-defined by binarity

• Classes are given by a finite sets of invariant cuts (i.e. small cofinality on exactly one side).
• (Ĩnv(U),⊗) is commutative: e.g. p(x0)⊗ p(y0) ∼D p(y1)⊗ p(x1) by gluing:
r := {x0 = y1 ∧ y0 = x1} ∪

• Every element is idempotent: e.g. if p(x) = tp(x > U), then
p(x) ∼D p(y1)⊗ p(y0) (seen before: glue x and y0):

y1

|
y0=x
|

Ĩnv(U) is the free idempotent commutative monoid generated by the invariant cuts:

(Ĩnv(U),⊗,≤D) ∼= (Pfin({invariant cuts}),∪,⊆)

Back

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back

Appendix

Random Graph
(Ĩnv(U),⊗) well-defined by binarity

In the Random Graph, ∼D is degenerate and (Ĩnv(U),⊗) resembles closely
(Sinv
<ω(U),⊗). For instance, it is not commutative:

Example (All types ∅-invariant)
These types do not commute, even modulo ∼D:

q(y) := {E(y, b) | b ∈ U}
p(w) := {¬E(w, b) | b ∈ U}

U

y

w

x

z

p(x)⊗ q(y)

q(z)⊗ p(w)

Proof Idea.
As px ⊗ qy ` ¬E(x, y) and qz ⊗ pw ` E(z, w), gluing cannot work. But in the
random graph domination is degenerate and there is not much more one can do.
More examples here Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO).

Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial). Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability

(over some small set, not necessarily the same as q)

• Finite satisfiability

(in some small set, not necessarily the same as q)

• Generic stability

(over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial). Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial).

Back

Appendix

Properties Preserved by Domination
Domination equivalence is quite coarse; for instance it does not preserve Morley
rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)
If p ≥D q and p has any of the following properties, then so does q:
• Definability (over some small set, not necessarily the same as q)

• Finite satisfiability (in some small set, not necessarily the same as q)

• Generic stability (over some small set, not necessarily the same as q)

• Weak orthogonality to a fixed type

Generic stability is particularly interesting:
• It is possible to have Ĩnv(U) 6= Ĩnv(Ueq) (more g.s. types, e.g. DLO+dense eq. rel.).

• Using [Tan], strongly regular g.s. types are ≤D-minimal (among the nonrealised ones).

• (Ĩnv
gs
(U),⊗,≤D) makes sense in any theory (can be trivial). Back

	Introduction
	Domination
	Results and Questions

