Introduction
[o]e]

Domination Results and Questions
000 e]e]

Product of Invariant Types Modulo Domination-Equivalence

Rosario Mennuni

University of Leeds

PhD project supervised by H.D. Macpherson and V. Mantova

Logic Colloquium
Prague, 15th August 2019



Introduction
e0

Overview

Motivation and Main Result

T complete, k large enough, Y a k-monster. Small = of size < k.

Slides here:




Introduction
e0

Overview
Motivation and Main Result

T complete, k large enough, 4 a k-monster. /S\'”T.all = of size < K.

In [HHM] to 4 is associated (Inv(U), ®) = (S (L), ®)/ ~p
and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)

In ACVF, IHV(LL) = InV(k) X InV(F) k := residue field, I" := value group

Slides here:




Introduction
e0

Overview
Motivation and Main Result

T complete, k large enough, 4 a k-monster. /S\'”T.all = of size < K.
In [HHM] to 4 is associated (Inv(U), ®) = (S™(U),®)/ ~p
and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, IHV(LL) = Il’lV(k) X InV(F) k = residue field, I" := value group

Theorem (M.)
There is a theory where (Inv(4l), ®) is not well-defined.

Slides here:




Introduction
e0

Overview
Motivation and Main Result

T complete, k large enough, 4 a k-monster. /S\'”T.all = of size < K.
In [HHM] to 4 is associated (Inv(U), ®) = (S™(U),®)/ ~p
and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)
In ACVF, IHV(LL) = Il’lV(k) X InV(F) k = residue field, I" := value group

Theorem (M.)
There is a theory where (Inv(4l), ®) is not well-defined.

Slides here:

In this talk:
e what is Inv(8),

e some examples of I/I;;/(ﬂ),

e main results.



Introduction
e0

Overview
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T complete, k large enough, 4 a k-monster. /S\'”T.all = of size < K.

In [HHM] to 4 is associated (Inv(U), ®) = (S (L), ®)/ ~p

and the following AKE-type result is proven:

Theorem (Haskell, Hrushovski, Macpherson)

In ACVF, IHV(LL) = Il’lV(k) X InV(F) k := residue field, I" := value group (to be precise, they use Inv(il))

Theorem (M.)

There is a theory where (Inv(4l), ®) is not well-defined. wor is Tav(w.
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In this talk:
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e some examples of I/I;;/(ﬂ),

e main results.
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Definition (p € S(4), A C U small)
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E.g. if p is A-definable or finitely satisfiable in A. Say p € S({) is invariant iff it is A-invariant for some small A C (.
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Invariant Types
Canonical extension and product
Definition (p € S(4), A C U small, B Z il arbitrary)
p is A-invariant iff whether p(z) F ¢(x;d) or not depends only on tp(d/A).

E.g. if p is A-definable or finitely satisfiable in A. Say p € S({) is invariant iff it is A-invariant for some small A C (.

Example (7' = DLO, A small)

pa+(z) ={z<d|d>AYU{z>d|d# A}
Pa+
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o(x;d) € (p| UB) &% for d € 8l such that d =, d, we have o(x;d) € p.
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E.g. if p is A-definable or finitely satisfiable in A. Say p € S({) is invariant iff it is A-invariant for some small A C (.

Example (7' = DLO, A small)

par(z) ={z <d[d>AyU{z>d[d¥ A}  par()@par(y) Fz <y
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Invariant Types
Canonical extension and product
Definition (p € S(4), A C U small, B Z il arbitrary)
p is A-invariant iff whether p(z) F ¢(x;d) or not depends only on tp(d/A).
E.g. if p is A-definable or finitely satisfiable in A. Say p € S(8l) is invariant iff it is A-invariant for some small A C L.

Example (7' = DLO, A small)

par(x) ={z <d|d>AyU{x >d|d# f;} pa+r(r) @par(y) Fx <y
A+
\

o(x;d) € (p| UB) &% for d € U such that d = d, we have o(z;d) € p.

Using this, define p(z,y;d) € p(x) ® q(y) PN o(x;b,d) € p| LUb (bEq)

Fact
® is associative. ® commutative <= T stable. Then it’s the usual (a,b) Ep®q <= a L b.
1t
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Domination

Definition (Domination preorder on S™¥(4l))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:

p, q are A-invariant, r 2 (p [ A)U (g [ A), and p(z) Ur(z,y) - q(y)
Domination equivalence p ~p g means p >p q >p p, and Ifnvv(il) = SIV(LU)/ ~p.
Equidominance p =p q means p >p q >p p, witnessed by the same r and Inv (i) = S?Z: W/ =p.

For T stable, it’s the usual p >p q <= 3aEp,bEqgVdd | a=d | b.
i B
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Domination
Definition (Domination preorder on S™(81))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:
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i B

Example (DLO, all types below are (-invariant)
tp(z > 4l)
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Domination
Definition (Domination preorder on S™(81))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:
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Domination equivalence p ~p g means p >p q >p p, and Ifnvv(il) = SIV(LU)/ ~p.
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Example (DLO, all types below are (-invariant)
tp(z > &) tp(y1 > yo > U)
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Domination
Definition (Domination preorder on S™¥(4l))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:
p, q are A-invariant, r O (p [ A)U (¢ [ A), and p(z) Ur(z,y) - q(y)
Domination equivalence p ~p g means p >p q >p p, and Ifnvv(il) = SIV(LU)/ ~p.
Equidominance p =p q means p >p q >p p, witnessed by the same r and Inv (i) = S?Z: W/ =p.

For T stable, it’s the usual p >p q <= 3aEp,bEqgVdd | a=d | b.
i B

Example (DLO, all types below are (-invariant)
tp(z > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7 :=={yg =} U...)

Yo = Y1
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Domination
Definition (Domination preorder on S™¥(4l))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:
p, q are A-invariant, r O (p [ A)U (¢ [ A), and p(z) Ur(z,y) - q(y)
Domination equivalence p ~p g means p >p q >p p, and Ifnvv(il) = SIV(LU)/ ~p.
Equidominance p =p q means p >p q >p p, witnessed by the same r and Inv (i) = SE’ZJ W/ =p.

For T stable, it’s the usual p >p q <= 3aEp,bEqgVdd | a=d | b.
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Example (DLO, all types below are (-invariant)
tp(z > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7= {yg =} U...)

Yo =1 Y1

Example (Random Graph)

p >p q < p 2 q after renaming/duplicating variables and ignoring realised ones.
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Domination
Definition (Domination preorder on S™(81))
Pz >D qy iff there are a small A C 4l and r € Sg,(A) such that:
p, q are A-invariant, r O (p [ A)U (¢ [ A), and p(z) Ur(z,y) - q(y)
Domination equivalence p ~p g means p >p q >p p, and Ifnvv(il) = SIV(LU)/ ~p.
Equidominance p =p q means p >p q >p p, witnessed by the same r and Inv (i) = S?Z: W/ =p.

For T stable, it’s the usual p >p q <= 3aEp,bEqgVdd | a=d | b.
i B

Example (DLO, all types below are (-invariant)
tp(z > W) >p tp(yr > yo > U) (“glue z and yo”, ie. 7= {yg =} U...)

Yo =1 Y1
Example (Random Graph, or a set with no structure (degenerate domination))

p >p q < p 2 q after renaming/duplicating variables and ignoring realised ones.
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Is ® a Congruence with respect to ~p?
Or: is (I/rgz(il), ®) well-defined?

It can be shown that if pg >p p1, then py ® ¢ >p p1 R q.

Question
Does qo >p q1 imply p® qo >p p®@ q17
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Is ® a Congruence with respect to ~p?
Or: is (Inv(4), ®) well-defined?

It can be shown that if pg >p p1, then py ® ¢ >p p1 ® q.

Question
Does qo >p q1 imply p® g0 >p p ® @17
Fact
If for T' the answer to the question above is “yes”, then
. (I/r;/(il), ®,<p) is an ordered monoid,
e the neutral element (and minimum) is the (unique) class of realised types, and

e nothing else is invertible (p ® ¢ realised = p, ¢ both realised!).
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Examples
(In all of these (I/r;/(il), ®) equals (Inv(il), ®) and is well-defined)

T strongly minimal (see €Z)
(IDV(L[), X, SD) = (N7 =+, S)

For T stable, ﬂ);(u) >~ N & T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +).
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Examples
(In all of these (I/nvv(u) ®) equals (Inv(il), ®) and is well-defined)

T strongly minimal (see )

(Inv(4),®, <p) = (N, +, <).

For T stable, Inv(il) = N < T is unidimensional, e.g. countable and Ri-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results Inv({) = @, (N, +, <), for some A = A().
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Examples
(In all of these (I/nVV(H) ®) equals (Inv(il), ®) and is well-defined)

T strongly minimal (see )

(Inv(4),®, <p) = (N, +, <).

For T stable, Inv(il) = N < T is unidimensional, e.g. countable and Ri-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results Inv({) = @, (N, +, <), for some A = A().

DLO (see )
(Inv(Y), ®, <p) = (P ({invariant cuts}), U, C).

Invariant cut = small cofinality on exactly one side.
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Examples
(In all of these (I/nVV(U) ®) equals (Inv(il), ®) and is well-defined)

T strongly minimal (see )

(Inv(41), ®, <p) = (N, +, <).

For T stable, Inv(il) = N < T is unidimensional, e.g. countable and Ri-categorical, or Th(Z, +).
T superstable (thin is enough)

By classical results Inv({) = @, (N, +, <), for some A = A().

DLO (see )

(Inv(Y), ®, <p) = (P ({invariant cuts}), U, C).
Invariant cut — small cofinality on exactly one side.

Random Graph (see )

~p is degenerate, (Inv(4l),®) resembles (S (), ®), e.g. it is noncommutative.
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Main Results

Theorem (M.)

There is a ternary, w-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ®.
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Main Results

Theorem (M.)

There is a ternary, w-categorical, supersimple theory of SU-rank 2 with degenerate
algebraic closure in which neither domination-equivalence nor equidominance are
congruences with respect to ®.

Theorem (M.)
If po >p p1 and pyg is definable/finitely satisfiable/generically stable/weakly

orthogonal to ¢, then so is p;.
Theorem (M.)

There is a notion of stationary domination, implied by 7" being stable or binary,
which guarantees (Inv(il), ®) to be well-defined.
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Questions/Work in Progress
Questions

1. Known counterexamples use IPy heavily. Is Inv(4() well-defined under NIP?
2. If SO, is 1/1\1;/(11) Commutative? The answer is no for Inv(sl).

3. Dependence of Ifnvv(il) on il in the stable non-thin and NIP unstable cases?

® |P case is clear: cardinality grows.
® Stable thin case is clear: multidimensionality.

4. Can Inv(4l) be finite? (T must be NIP unstable)
5. What does the smallest ®-congruence generated by ~p look like?
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More examples: Branches

Example
Let T be the theory in the language {P, | ¢ € 2<%} asserting that every point

belongs to every Py, for exactly one n € 2¢. Then Inv(i) = @gx, N.

Basically, 1/1\1;/(11) here is counting how many new points are in a “branch”.
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More Examples: Generic Equivalence Relation

Equivalence relation £ with infinitely many infinite classes (and no finite classes).
A set of generators for Inv(4l) looks like this:
e a single ~p-class [0] for realised types
o if po(x) == {E(z,a)} U{zx ¢ U}, then [p.] = [ps] if and only if F E(a,b);
corresponds to new points in an existing equivalence class

e asingle ~p-class [py], where py :== {—=E(z,a) | a € U}; corresponds to new
equivalence classes.

The product adds new points/new classes. So, if 4 has k equivalence classes,

Iv(d) =N& PN
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More Examples: Cross-cutting Equivalence Relations
T, = n generic equivalence relations F;; intersection of classes of different E;
always infinite. Here (Inv(8l),®) is generated by:
e a single ~p-class [0] for realised types
o if po(x) == {Ei(x,a) | i <n}U{zx ¢ U}, then [p.] = [ps] if and only if
E Nicn Ei(a,b); corresponds to new points in Ej-relation with a for all i
e For each i < n, a class [p;] saying = is in a new FE; class, but in existing
Ej-classes for j # i (does not matter which)

So
Inv HN@@N

<n
Why [] instead of @7 If we allow, say, Ny equlvalence relations, then
bdd

Tnv (8 HN@@N

<N
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Other Notions
One can define a finer equivalence relation:
Definition
p =p q is defined as p ~p ¢, but by asking the same r to work in both directions:
pUrkgqgand gUrF p.

Another notion classically studied is (see e.g. [Poil):

Definition

p >Rk ¢ iff every model realising p realises q.

This behaves best in totally transcendental theories (because of prime models). It
corresponds to p(x) U {p(z,y)} F q(y).

But even there, modulo ~gx it is not true that every type decomposes as a product
of >rk-minimal types (but in non-multidimensional totally transcendental theories
every type decomposes as a product of strongly regular types).

A classical example where >p differs from >ggk: generic equivalence relation with a
bijection s such that Vo E(z, s(x)).
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Hrushovski's Counterexample

Example (Hrushovski)
In DLO plus a dense-codense predicate P, Inv(4l) is not commutative.

Proof idea.

Let p(z) :== {P(x)} U{x > U} and ¢(y) := {-P(x)} U{y > U}. Then p, ¢ do not
commute, even modulo =p (but they do modulo ~p).

The predicate P forbids to “glue” variables. One will be “left behind”: e.g. if

rEay <yo <y <1, knowing that y; > 4 does not imply zo > Ll O

In this case, for each cut C there are generators [pc,p] and [pc -p], with relations
* [pc.p] ® [pc,p] = [pc,-rl @ [pc,pl = [pc.p]
e (same relations swapping P and —P)
o [peo, -1 @ [pey,-] = [per,-1 @ [pcy, -] whenever Co # Ch.



Appendix
Stable Case

In a stable theory, <p, ~p and =p can be expressed in terms of forking:
Definition (See e.g. [Pil])

avp b iff, for all ¢,
al c=bl c
E E

p>g q (p dominates g over E) iff there are a F p and b F ¢ such that a>g b
p g q (p and q are domination equivalent) iff p>g q>g p, i.e. there are
NN

Fp Fq Fp
p =g q (p and q are equidominant over E) iff there are a F p and b F ¢ such that
albg b >Ea

These are well-behaved with non-forking extensions: we can drop g.
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Comparison

Proposition (7" stable)
The previous definitions of <p= <, ~p=i and =p==.
Remark

The proof uses crucially stationarity of types over models.

In almost all examples we saw before, ~p coincides with =p.

Exception: in DLO with a predicate, (Inv(4l), ®) is not commutative, while
(Inv(4l),®) is (in fact, it is the same as in DLO).

Fact (See [Wag, Example 5.2.9])

Even in the stable case, ~p and =p are generally different.
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Classical Results

In the thin case (generalises superstable), this is classical (e.g. [P1il]):
Theorem (7 thin)

I/IRI(L[) is a direct sum of copies of N.

If T is moreover superstable, (Inv(il), ®) is generated by {[p] | p regular}.

Superstability (even just thinness) implies that =p and ~p coincide.

The behaviour of >p in general seems related to the existence of some kind of
prime models (in the stable case, “prime a-models” are the way to go). This seems
to hint that, maybe, o-minimal theories are a good context to investigate.

Also, some suitable generalisation of the Omitting Types Theorem would help.
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(Non-multi)Dimensionality

At least in the superstable case, independence of Ifnvv(il) on i already had a name:
Definition

T is (non-multi)dimensional iff no type is orthogonal t0 (every type that does not fork over) (.
If $ly <t 4f; one has a map e: I/I\l;/(il()) — 1/1\1;/(111).

Proposition (7" thin)

¢ surjective <= T dimensional.

Question

Is this true under stability? It boils down to the image of ¢ being downward closed.
I suspect this should follow from classical results.
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Generically Stable Part

Proposition
g <p p definable/finitely satisfiable/generically stable = so is q.

As generically stable types commute with everything, in any theory the monoid

generated by their Classes iS Well—deﬁned. (Warning: p generically stable % p ® p generically stable)
g.s. part
—

Hope
At least in special cases, get decompositions similar to Inv(Y) = Inv(k) x Inv(T).

Probably one should really work in 7°9:

Example
I/_I\l/T = DLO+equivalence relation Wlth (no finite classes and infinitely many) dense Classes,
Inv (i) grows when passing to 7°4, which has more generically stable types.

Question
How can the generically stable part look like?
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Interaction with Weak Orthogonality

Definition
p(x) is weakly orthogonal to q(y) iff p U g is complete.

Remark
Weakly orthogonal types commute.

Proposition
Weak orthogonality strongly negates domination: ¢ LY pg >p p1 = ¢ LV p;.
In particular if ¢ 1Y p >p g then ¢ is realised.

Question
Under which conditions if p f¥q then they dominate a common nonzero class?

Known:
e Superstable (or thin) is enough.

e Fails in the Random Graph.



Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

f-p=Ae(, f(d) | p(z,d) € p}

Consider this action restricted to Aut(l/A).
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+(z) ={z <d|d>b}U{x >d|d <b} and let
f € Aut(U/A) be such that f(b) = c.
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Action on Type Space

f € Aut(Ll) acts on p € S(4) by changing parameters in formulas:

Consider this action restricted to Aut(l/A).

Example
T = DLO, consider py+(z) ={z <d|d>b}U{x >d|d <b} and let
f € Aut(U/A) be such that f(b) = c. Then f - py+ = p.+.

/7N
DPy+ D+

v ()

~ 1
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Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: p € SinV(4, A) <= whether p(z) F ¢(z;d) or not depends only on tp(d/A)

Fact (B arbitrary, A small)
Every p € Sinv(4, A) has a unique extension (p | 4B) € SV (UB, A)
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Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: p € SinV(4, A) <= whether p(z) F ¢(z;d) or not depends only on tp(d/A)
Fact (B arbitrary, A small)
Every p € Sinv(4l, A) has a unique extension (p | 4B) € SIV(UB, A): for tuples d from UB
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Example (T' = DLO, A small)

pa+(z) ={z<d|d>AYU{z>d|d# A}
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Invariant Extension

How to canonically extend an invariant type to bigger sets

Recall: p € SinV(4, A) <= whether p(z) F ¢(z;d) or not depends only on tp(d/A)
Fact (B arbitrary, A small)
Every p € Sinv(4l, A) has a unique extension (p | 4B) € SIV(UB, A): for tuples d from UB

o(z;d) € (p| UB) &L for d € U such that d =4 d, we have ¢(z;d) € p.

Example (T' = DLO, A small)

par(@) ={x<d|d>A}U{z>d|d# A}“ =" (ps+ | UB)(x) (now d € UB)
Pa+

o)
F)

(pa+ | B)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+(x) @ pa+(y)

Pa+
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+(x) @ pa+(y)

Pa+
-4
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+ () @pa+(y) Fo <y

AH—H—HM(-QIE-Z-)f-ZIJ-)
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Product of Invariant Types

Definition (p invariant)
o(x,y;d) € p(x) @ qly) €5 p(a;b,d)ep|th  (bEqQ)

Example
(pa+(@) ={z<d|d>A}U{z>d|d# A}) pa+ () @pa+(y) Fo <y

Pa+
)
z Y
Fact

® is associative. It is commutative if and only if T is stable.
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Some Sufficient Conditions

Proposition
o >D q1 = p® qo >p p R q1 is implied by any of the following:
e g1 algebraic over qg: every c F ¢ is algebraic over some b F qy. E.g. ¢1 = fiqo
for some definable function f. Reason: {c | (b,c) E r} does not grow with &l.
e T is binary: (Jtp(asa;) Ftp(aq,...,an): few questions about a F p and ¢ F ¢1.
e Or even weakly binary: tp(a/) Utp(b/U) Utp(ab/M) E tp(ab/Ll), e.g. theories
that become binary after naming constants, like a circular order.
e T is stable.
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A General Sufficient Condition

Any condition in the Proposition implies that if
there is some r € S,.(M) witnessing qo(y) >p

q1(z), then there is one such that, in addition, if Proposition
9 2D q1 =>P®4qo 2D P ® q1
e b,c €ty T 4 are such that (b,c) F g U, holds if
. ° is algebraic over qqg, or
®* D S va(ﬂ, M) and a ': p(iL‘) ‘ ul, L Z‘lis wcikly binary, ZS
o 7[p] = tpyys(abe/M) U {o = w}. o Tl
then p®qoUr[p] - p®q. We call this stationary
domination.

Open Problems

e Understand if this holds under NIP.
e Understand if this is equivalent to good definition of I/I\l-{/(ﬂ).
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

qo(y) — L(_|G(y) < _OOH

< @
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A Counterexample

(with SOP and IP3)
Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some

triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) =“~Gy) <—oc”
qi(z) =“"G(nz) < —c0” ¢,

< @
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) = “~G(y) < —oo”
q1(z) =“G(rz) < —o0” Ny

r(y,z) ={y=mz}U... y

i

1
®
Yy

qo Ur I q1: no hyperedges to decide.
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

Go(y) ="“~Gy) <—oc”
q1(2) ="“2G(rz) < —o0” " T/ \\\;//

r(y,z) ={y=mz}U... [T
p(x) ="“G(rx) < —o0”, | !

1
®
Yy

U{~Rs(z,a,b) | a,be U}

go Ur I q1: no hyperedges to decide.
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(72) < G(Tw)) (for some permutation of . z, w)

q0(y) ="“7G(y) < —od” \
q1(z) =“2G(rz) < —o0” 2 7
r(y,z) ={y=mz}U... Yy ¥

):

p(x) ="“G(rx) < —o0”, | |
U{-Rs(w.a.b) [abet)

go Ur F ¢q1: no hyperedges to decide. But does p ® qo(x,y) >p p® qu(t, 2)?
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A Counterexample
(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(r2) < G(7w)) (for some permutation of . z, w)

wly) =G <~ 7 L2
q1(2) =“2G(rz) < —o0” = * /9D
r(y,z) ={y=mz}U... \”,’ . \”/ ’
pla) ="G(rz) < —oc” 1
U{-Rs(z,a,b) |a,bet} 3

go Ur F ¢q1: no hyperedges to decide. But does p ® qo(x,y) >p p® qu(t, 2)?
No: even with x = ¢ no small type can decide all hyperedges involving z and z!
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A Counterexample

(with SOP and IP3)

Idea: fiber over a 2-coloured DLO; put a generic tripartite 3-hypergraph on some
triples of fibers: R3(z,z,w) — (G(72) < 2G(r2) < G(7w)) (for some permutation of . z, w)

wly) =G <~ 7 L2
q1(2) =“2G(rz) < —o0” = * /9D
r(y,z) ={y=mz}U... \”,’ . \”/ ’
p(x) ="“G(rx) < —o0”, | |
U{-Rs(z,a,b) |a,bet} 3

go Ur F ¢q1: no hyperedges to decide. But does p ® qo(x,y) >p p® qu(t, 2)?
No: even with x = ¢ no small type can decide all hyperedges involving z and z!
Supersimple version . Also works for a number of of ~p.
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Another Counterexample
Ternary, supersimple, w-categorical, can be tweaked to have degenerate algebraic closure
Replacing the densely coloured DLO with a random graph R yields a supersimple

counterexample of SU-rank 2; forkingisa | b <= (anNbC C) A (ranmb C 7C).
C

R3(z0, 71, 72) — \/ (Ra2(m200, T241) A Ro(T240, T02) A "Ro(TTg1, T02))
€Sy (exactly two edges between wxo, 721, TX2)

qo(y) = {~Ra(y,a) | a € U} .
q1(2) = {-Ra(rz,a) | a € U}
r(y,z) ={y=mz}U...
p(x) == {Rao(mx,a) | a € U} \ . Gsr‘;”h o
U{-Rs3(x,a,b) | a,be U} ' Z : —

go U F q1: no hyperedges to decide. Same problem: p ® qo(z,y) 2p p ® q1(t, 2).
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Strongly Minimal Theories

(Inv(8l), ®) well-defined by stability

Example
If T is strongly minimal, (I?l;/'(ﬂ), ®,<p) = (N, +,<).

(for T stable, fr};(ﬂ) =~ N < T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +))
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Example
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(for T stable, Inv(8l) & N < T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +))

In this case, Ifnvv(il) is basically “counting the dimension”. E.g.: in ACFy we have
p(x1, ... xn) ~p Y1, ..., Ym) < trdeg(x/U) = trdeg(y/L).

Glue transcendence bases; recover the rest with one formula.



Appendix

Strongly Minimal Theories

(Inv(4), ®) well-defined by stability

Example
If T is strongly minimal, (Inv(4), ®, <p) = (N, +, <).
(for T stable, Iﬁn\;(u) =~ N < T is unidimensional, e.g. countable and Rj-categorical, or Th(Z, +))

In this case, I’nvv(il) is basically “counting the dimension”. E.g.: in ACFy we have

p(x1, ... xn) ~p Y1, ..., Ym) < trdeg(x/U) = trdeg(y/L).
Glue transcendence bases; recover the rest with one formula.

Taking products corresponds to adding dimensions: if (a,b) F p ® ¢, then
dim(a/Ub) = dim(a/4), and in strongly minimal theories

dim(ab/) = dim(b/) 4+ dim(a/Ub)

More generally, in superstable theories (or even thin theories), by classical results IFr:/(Ll) > P; AN, +, <), for some .
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Dense Linear Orders

(Inv(4), ®) well-defined by binarity

e Classes are given by a finite sets of invariant cuts (i.e. smail cofinality on exactly one side).
. (1/1\1;/(11), ®) is commutative: e.g. p(zo) ® p(yo) ~p p(y1) @ p(z1) by gluing:
r={xo=y1Ay=z1}U...
e Every element is idempotent: e.g. if p(x) = tp(z > L), then
p(z) ~p p(y1) @ p(yo) (seen before: glue z and yo):

Yo=x Y1

Ifr;f(ﬂ) is the free idempotent commutative monoid generated by the invariant cuts:

(Inv(U), ®, <p) = (Pgn({invariant cuts}), U, C)
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In the Random Graph, ~p is degenerate and (Inv({), ®) resembles closely
(S (81), ®). For instance, it is not commutative:
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(S (81), ®). For instance, it is not commutative:

Example (All types (-invariant)
These types do not commute, even modulo ~p:
Y

a(y) ={E(y,b) | be U}
p(w) = {—=E(w,b) | b€ U}
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Random Graph
(Inv(4), ®) well-defined by binarity
In the Random Graph, ~p is degenerate and (Inv({), ®) resembles closely
(S (81), ®). For instance, it is not commutative:

Example (All types (-invariant)

These types do not commute, even modulo ~p:

q(y) = {E(y,b) | b € s} a() ® p(w)

p(w) = {-E(w,b) | b e U} %

Proof Idea.
As p, ® qy - —FE(x,y) and ¢. ® py, - E(z,w), gluing cannot work. But in the

random graph domination is degenerate and there is not much more one can do.
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rank (generic equivalence relation), nor dp-rank (DLO).
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rank (generic equivalence relation), nor dp-rank (DLO). Anyway:

Theorem (M.)

If p >p q and p has any of the following properties, then so does ¢:
L] Deﬁnability (over some small set, not necessarily the same as q)
e Finite satisfiability (in some small set, not necessarily the same as q)
e Generic stability (over some small set, not necessarily the same as q)

e Weak orthogonality to a fixed type

Generic stability is particularly interesting:
e It is possible to have IfI;/(il) #* I?l;/(ileq) (more g.s. types, e.g. DLO-+dense eq. rel.).
e Using |Tan|, strongly regular g.s. types are <p-minimal (among the nonrealised ones).

. (I;Vgs(il), ®, <p) makes sense in any theory (can be trivial).
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