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Motivation

What can we say in the language (0, 1,+,−, ·) about the direct product
ring ∏

p

Fp = F2 × F3 × F5 × . . .

where Fp = Z/pZ, the finite field on p elements?

What are the definable sets?

Is it stable/simple/NIP?

Can we define a copy of the integers? (i.e.
{. . . , (1, 1, 1, . . .), (2, 2, 2, . . .), (3, 3, 3, . . .), . . .})

Motivation: model theory of the adeles, as studied by Angus Macintyre
and Jamshid Derakhshan.

∏
p Fp arises as the “residue ring” of the valued

ring of adeles over Q.
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Main Results

Proposition∏
p Fp has Independence Property and Strict Order Property, as it

interprets the boolean algebra structure of P(ω).

Proposition

For any non-torsion a ∈
∏

p Fp, the set Za is not definable.

Proposition

Definable subsets of
∏

p Fp are Boolean combinations of ∃∀∃-definable
sets.
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Interpreting the Boolean algebra of the index set

In
∏

p Fp, a is an idempotent (a2 = a) if and only if every coordinate
of a is 0 or 1.

This allows us to define the Boolean algebra P(primes) internally.

Associate X ⊂ {primes} to its “characteristic function” cX , an
idempotent in

∏
p Fp.

Note that cX∩Y = cX · cY and cX̄ = 1− cX . Hence:

Proposition

In
∏

p Fp, there is a definable copy of (P(ω),∩,∪,−). In particular,∏
p Fp has the independence property and the strict order property.
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Interpreting Supports

Given a ∈
∏

p Fp, let supp(a) := {p : a(p) 6= 0}.

E.g., supp((1, 0, 2, 4, 0, 1, . . .)) = {2, 5, 7, 13, . . .}.
For an idempotent cX , we have a = cX · a iff supp(a) ⊆ X .

Let us write “a v c” to mean a = c · a.

We can then define “c = supp(a)” internally:

c = supp(a) iff c2 = c , and a v c , and for all d (d2 = d and a v d
implies c v d)

This ∀-definition works for any product of integral domains. When
each factor ring is a field, we can also give an ∃-definition:

c = supp(a) iff c2 = c and c = u · a for some unit u.

We can vastly generalize support via the notion of “Boolean Valuation”
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Interpreting Boolean Valuations

Definition (Boolean Valuation)

Let ϕ(x1, . . . , xn) be an L-formula. Let a1, . . . , an ∈
∏

p Fp. The Boolean
valuation of ϕ(x̄) at ā, denoted ‖ϕ(ā)‖, is the subset {p : Fp |= ϕ(ā(p)}.

With this notation, the set supp(a) is the Boolean valuation ‖a 6= 0‖.

Proposition

For every formula ϕ(x̄), the function sending ā to the idempotent
representing ‖ϕ(ā)‖ is ∅-definable in

∏
p Fp.

Proof:

(Neg)Atomic: The valuation ‖F (ā) 6= 0‖ is supp(F (ā)).

Boolean Connectives: Easy, using the fact that e.g.
‖(ϕ ∧ ψ)(ā)‖ = ‖ϕ(ā)‖ ∩ ‖ψ(ā)‖.
∃: Use the fact that ‖∃zϕ(z , ā)‖ =

⋃
b ‖ϕ(b, ā)‖.
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Boolean Connectives: Easy, using the fact that e.g.
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The Feferman-Vaught Theorem

Notation

Let {Mλ : λ ∈ Λ} be a family of L-structures. Let M :=
∏

λ∈Λ Mλ be the
cartesian product structure.

Definition (‖ϕ(·)‖)
Let ϕ(x1, . . . , xn) be an L-formula and let a1, . . . , an ∈ M. Then
‖ϕ(ā)‖ ∈ P(Λ) is the set {λ ∈ Λ : Mλ |= ϕ(a1(λ), . . . , an(λ))}.

Theorem (Feferman-Vaught 1959)

Let φ(x̄) be a formula. Then there are L-formulas ϕ1(x̄), . . . , ϕm(x̄) and
an LBoolean formula σ(y1, . . . , ym) such that for every ā ∈ M,

M |= φ(ā) iff P(Λ) |= σ(‖ϕ1(ā)‖, . . . , ‖ϕm(ā)‖)
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A Topological Consequence

Corollary

Every definable subset of M :=
∏

λ∈Λ Mλ is a boolean combination of sets
of the form {ā ∈ M : Mλ |= ϕ(ā(λ)) for at least k indices λ}, where k ∈ ω
and ϕ(x̄) is an L-formula.

Let us topologize M by giving each Mλ the discrete topology, and giving
M the induced (Tychnoff) product topology.

Corollary

Every definable subset of M is a boolean combination of open sets in this
topology (in the language of algebraic geometry, every definable set is
constructible)

Alice Medvedev and Alex Van Abel* (City University of New York Graduate Center)The Feferman-Vaught Theorem and products of finite fields August 15, 2019 9 / 13



A Topological Consequence

Corollary

Every definable subset of M :=
∏

λ∈Λ Mλ is a boolean combination of sets
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Why topologize?

Let us topologize M by giving each Mλ the discrete topology, and giving
M the induced product topology. Then every definable subset of M is a
boolean combination of open sets.

Consider
⊕

p Fp ⊂
∏

p Fp, viewed as the elements of finite support. Is
this definable?

Note that for any finitely given primes p1, . . . , pn and elements
a1, . . . , an with ak ∈ Fpk , we can easily find elements a, b ∈

∏
p Fp

extending 〈a1, . . . , an〉 such that a ∈
⊕

p Fp and b /∈
⊕

p Fp.

Topologically, this means that both
⊕

p Fp and its complement are
dense inside

∏
p Fp – equivalently, the boundary of

⊕
p Fp is all of∏

p Fp.

However, it is easy to verify that the boundary of a boolean
combination of open sets must be nowhere dense.

Therefore,
⊕

p Fp is not definable inside
∏

p Fp
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Consider
⊕

p Fp ⊂
∏

p Fp, realized as the elements of finite support.
Is this definable?

Note that for any finitely given primes p1, . . . , pn and elements
a1, . . . , an with ak ∈ Fpk , we can easily find elements a, b ∈

∏
p Fp

extending 〈a1, . . . , an〉 such that a ∈
⊕

p Fp and b /∈
⊕

p Fp.

Topologically, this means that both
⊕

p Fp and its complement are
dense inside

∏
p Fp – that is, the boundary of

⊕
p Fp is all of

∏
p Fp.

However, it is easy to verify that the boundary of a boolean
combination of open sets must be nowhere dense.

Therefore,
⊕

p Fp is not definable inside
∏

p Fp.

This is also how we show that no Za is definable (for non-torsion a):

The set Z(1, 1, 1, . . .) has this same dense-codense property.

For general non-torsion a, the set Za does not have this property
directly (a may have 0’s as coordinates).

However, the set {b : ba ∈ Za} does; hence neither it nor Za is
definable.
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Quantifier Reduction for
∏

p Fp

Theorem (Feferman-Vaught (1959), “Tarski Reduction”)

Every definable subset of M :=
∏

λ∈Λ Mλ is a boolean combination of sets
of the form {ā ∈ M : Mλ |= ϕ(ā(λ)) for at least k indices λ}, where k ∈ ω
and ϕ(x̄) is an L-formula.

Theorem (Ax (1968), Kiefe (1976))

Uniformly across all finite fields, every LRing formula ϕ(x̄) is equivalent to
a boolean combination of formulas of the form ∃t : F (x̄ , t) = 0 with
F (x̄ , t) ∈ Z[x̄ , t].

Corollary

Every definable subset of
∏

p Fp is a boolean combinations of sets of the
form {ā ∈

∏
p Fp : Fp |= φ(ā(p)) for at least k primes p}, where k ∈ ω

and φ is a Boolean combination of formulas of the form ∃t : F (x̄ , t) = 0
with F (x̄ , t) ∈ Z[x̄ , t].
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Quantifier Reduction for
∏

p Fp

Every definable subset of
∏

p Fp is a boolean combinations of sets of the
form {ā ∈

∏
p Fp : Fp |= φ(ā(p)) for at least k primes p}, where k ∈ ω

and φ is a Boolean combination of formulas of the form ∃t : F (x̄ , t) = 0
with F (x̄ , t) ∈ Z[x̄ , t].

When ϕ(x̄) is a formula of the form ∃t : F (x̄ , t) = 0, the internal mapping
ā 7→ ‖ϕ(ā)‖ can be defined with a ∀∃-formula. Hence:

Corollary

Every definable set of the form {ā ∈
∏

p Fp : Fp |= φ(ā(p)) for at least k
primes p} has at most ∃∀∃ complexity (the extra ∃ is for the existence of
k atoms under ‖φ(ā)‖). Therefore, all definable subsets of

∏
p Fp are

boolean combinations of ∃∀∃ sets.

Thank you!
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ā 7→ ‖ϕ(ā)‖ can be defined with a ∀∃-formula. Hence:

Corollary

Every definable set of the form {ā ∈
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