Effective coding and decoding structures.
Logic Colloquium 2019

Alexandra A. Soskova 1

Joint work with J. Knight and S. Vatev

!Supported by Bulgarian National Science Fund DN 02/16 /19.12.2016 and NSF
grant DMS 1600625/2016 D> <> «=» «T» T HAC



Borel embedding

Definition (Friedman-Stanley, 1989)

We say that a class K of structures is Borel embeddable in a class of
structures K’, and we write K <g K, if there is a Borel function
¢ : I — K’ such that for A, B € K, A= B iff d(A) = d(B).

Theorem
The following classes lie on top under <g.

© undirected graphs (Lavrov,1963; Nies, 1996; Marker, 2002)

@ fields of any fixed characteristic (Friedman-Stanley; R.
Miller-Poonen-Schoutens-Shlapentokh, 2018)

© 2-step nilpotent groups ( Mal'tsev, 1949; Mekler, 1981)
© linear orderings (Friedman-Stanley)
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Turing computable embeddings

Definition (Calvert-Cummins-Knight-S. Miller, 2004)

We say that a class K is Turing computably embedded in a class K’, and
we write IO <;c K, if there is a Turing operator ® : K — K’ such that for
all A,Be K, A= B iff d(A) = (B).

A Turing computable embedding represents an effective coding procedure.

Theorem
The following classes lie on top under <.

© undirected graphs

@ fields of any fixed characteristic
© 2-step nilpotent groups

@ linear orderings
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Medvedev reducibility

A problem is a subset of 2% or w®.
Problem P is Medvedev reducible to problem @ if there is a Turing
operator ® that takes elements of @ to elements of P.

Definition

We say that A is Medvedev reducible to BB, and we write A < B, if there
is a Turing operator that takes copies of I3 to copies of A.

Supposing that A is coded in B, a Medvedev reduction of A to B
represents an effective decoding procedure.
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Effective interpretability

Definition (Montlban)

A structure A = (A, R;) is effectively interpreted in a structure B if there is
aset D C B<¥, computable Y -definable over (), and there are relations ~
and R on D, computable A;-definable over (), such that (D, R})/~ = A.

Definition (R. Miller)

A computable functor from B to A is a pair of Turing operators ®, V such
that ® takes copies of BB to copies of A and W takes isomorphisms
between copies of B to isomorphisms between the corresponding copies of
A, so as to preserve identity and composition.
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Equivalence

The main result gives the equivalence of the two definitions.
Theorem (Harrison-Trainor, Melnikov, R. Miller and Montalban)

For structures A and B, A is effectively interpreted in B iff there is a
computable functor ®, ¥ from B to A.

Corollary

If A is effectively interpreted in B, then A < B.
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Coding and Decoding

Proposition (Kalimullin, 2010)

There exist A and B such that A <, B but A is not effectively interpreted
in .

v

Proposition

If A is computable, then it is effectively interpreted in all structures B.

Proof.

Let D = B<“. Let b ~ C if b, T are tuples of the same length. For
simplicity, suppose A = (w, R), where R is binary. If A = R(m, n), then
R*(b, €) for all b of length m and € of length n. Thus,

(D,R*)/. =2 A. O

v
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Borel interpretability

Harrison-Trainor, Miller and Montlban, 2018, defined Borel versions of the
notion of effective interpretation and computable functor.

Definition
@ For a Borel interpretation of A = (A, R;) in B the set D C B<“ the
relations ~ and R’ on D, are definable by formulas of L.

@ For a Borel functor from B to A, the operators ® and VW are Borel.

Their main result gives the equivalence of the two definitions.

Theorem (Harrison-Trainor, Miller and Montlban)

A structure A is interpreted in B using L,,.-formulas iff there is a Borel
functor ®, V¥ from B to A.
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Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing computable
embeddings.

Graphs also lie on top under effective interpretation.

Question: What about linear orderings under effective interpretation?

And under using L,,,-formulas?
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Interpreting graphs in linear orderings

Proposition
There is a graph G such that for all linear orderings L, G £ L.

Proof.

Let S be a non-computable set. Let G be a graph such that every copy
computes S.

We may take G to be a “daisy” graph”, consisting of a center node with a
“petal” of length 2n+3if n€ Sand2n+4if n¢ S.

Now, apply:

Proposition (Richter)

For a linear ordering L, the only sets computable in all copies of L are the
computable sets.
=)
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Interpreting a graph in the jump of linear ordering

We are identifying a structure A with its atomic diagram. We may
consider an interpretation of A in the jump B’ of B. Note that the
relations definable in B’ by computable ¥; relations are the ones definable
in B by computable X» relations.

Proposition
There is a graph G such that for all linear orderings L, G £ L.

Proof.

Let S be a non—Ag set. Let G be a graph such that every copy computes
S. Then apply:

Proposition (Knight, 1986)

For a linear ordering L, the only sets computable in all copies of L’ (or in
the jumps of all copies of L), are the Ag sets.

v

o)
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Interpreting a graph in the second jump of linear ordering

Proposition
For any set S, there is a linear ordering L such that for all copies of L, the
second jump of L computes S.

Proof.
We may take L to be a “shuffle sum” of n+1for ne S @ S€ and w. [

Proposition

For any graph G, there is a linear ordering L such that G <; L”. In fact,
G is interpreted in L using computable ¥ 3 formulas.

Proof.

Let S be the diagram of a specific copy Gy of G and let L be a linear order
such that S <; L”. We have computable functor that takes the second
jump of any copy of L to Gy, and takes all isomorphisms between copies of
L to the identity isomorphism on Gp. [

v
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Friedman-Stanley embedding of graphs in orderings

Friedman and Stanley determined a Turing computable embedding
L: G — L(G), where L(G) is a sub-ordering of Q<% under the
lexicographic ordering.
Q Let (Ap)new be an effective partition of Q into disjoint dense sets.
@ Let (tp)1<n be a list of the atomic types in the language of directed
graphs.

Definition

For a graph G, the elements of L(G) are the finite sequences

r0qim ... m-1qntnk € Q<% such that for i < n, r; € Ag, r, € A1, and for
some ai,...,an € G, satisfying tm,, qi € A;, and k < m.
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No uniform interpretation of G in L(G)

Theorem

There are not L,,,, formulas that, for all graphs G, interpret G in L(G). J

The idea of Proof: We may think of an ordering as a directed graph. It
is enough to show the following.

Proposition
1 wy™ is not interpreted in L(w;"™) using computable infinitary
formulas.

2 For all X, wy< is not interpreted in L(wy) using X-computable
infinitary formulas.
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Proof of (1)
The Harrison ordering H has order type w* (1 +n). It has a computable
copy.

Let / be the initial segment of H of order type wICK. Thinking of H as a
directed graph, we can form the linear ordering L(H). We consider

L(1) C L(H).

Lemma

L(/) is a computable infinitary elementary substructure of L(H).

Proposition (Main)

There do not exist computable infinitary formulas that define an
interpretation of H in L(H) and an interpretation of / in L(/).

To prove (1), we suppose that there are computable infinitary formulas
interpreting wch in L(wch). Using Barwise Compactness theorem, we get
essentially H and / with these formulas interpreting H in L(H) and [ in
L(1).
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Proof of the Proposition(Main)

Lemma

Q For any_l_) € L(/), and c € L(/) there is an automorphism of L(/)
taking b to a tuple b’ entirely to the right of c.

@ For any b € L(/), and c € L(/) there is also an automorphism taking
b to a tuple b” entirely to the left of c.

Lemma

Suppose that we have computable ¥, formulas D, & and ~, defining an
interpretation of H in L(H) and / in L(/). Then in D) there is a fixed n,
and there are n-tuples, all satisfying the same ¥, formulas, and
representing arbitrarily large ordinals o < wCK.

v

We arrive at a contradiction by producing tuples b,b/,¢in DY, b and B/
are automorphic, b, ¢ and ¢, b’ satisfy the same Y, formulas, and the
ordinal represented by b and b’ is smaller than that represented by C.
Then b, ¢ should satisfy &, while ¢, b’ should not.
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Conjecture
We believe that Friedman and Stanley did the best that could be done.

Conjecture. For any Turing computable embedding © of graphs in
orderings, there do not exist L, formulas that, for all graphs G, define
an interpretation of G in ©(G).

M. Harrison-Trainor and A. Montlban came to a similar result very
recently by a totally different construction. Their result is that there exist

structures which cannot be computably recovered from their tree of tuples.
They proved :

© There is a structure A with no computable copy such that T(A) has
a computable copy.

@ For each computable ordinal « there is a structure A such that the

Friedman and Stanley Borel interpretation L(A) is computable but A
has no A? copy.
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Mal'tsev embedding of fields in groups

If F is a field, we denote by H(F) the multiplicative group of matrices of
kind

1
h(a,b,c)=1| 0O
0

o~ o
= 0 o

where a, b, c € F. Note that h(0,0,0) = 1.
Groups of kind H(F) are known as Heisenberg groups.

Theorem (Mal'tsev)
There is a copy of F defined in H(F) with parameters. J
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Natural isomorphisms

For a non-commuting pair (u, v), where u = h(u1, up, u3) and
v = h(v1,va, v3), let

Dy =0 2
Theorem

Vi V2

The function f that takes x € F to h(0,0, A, -F X) is an isomorphism.

o & = E DA
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Morozov's isomorphism

Lemma (Morozov)

Let (u,v) and (u', v') be non-commuting pairs in G = H(F). Let F(, )
and F(, 1 be the copies of F defined in G with these pairs of parameters.
There is an isomorphism g from F(, ) onto F(,s /) defined in G by an
existential formula with parameters u, v, u’, v'.

Note that A, ,) is the multiplicative identity in F(, ).
Let g(X) =y << x= A(u,v) (') Y-
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Computable functor

Theorem
There is a computable functor ®, ¥ from H(F) to F. }

@ For G = H(F), ®(G) is the copy of F obtained by taking the first
non-commuting pair (u,v) in G and forming (D; +; -(,.v))-

e Take (Gi, f, Gy), where G; = H(F), and G; Zf G,. Let (u,v), (U, V')
be the first non-commuting pairs in Gy, Gy, respectively.

> Let h be the isomorphism from F¢(,y (v)) onto F(, ) defined in G,
with parameters f(u), f(v), v, v'.

» Let f/ be the restriction of f to the center of Gj.

» Then \U(Gl, f, G2) =hof.
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Finitely existential interpretation and generalizing

Corollary (Alvir,Calvert,Harizanov,Knight,Miller, Morozov,S, Weisshaar)
F is effectively interpreted in H(F). J

(u,v,x) ~ (v, v',x") holds if Morozov's isomorphism from F(, .y to
F(uw vy takes x to x.

Proposition

Suppose A has a copy Aj defined in (5, l_)), using computable > ;
formulas, where the orbit of b is defined by a computable ¥; formula
©(X). Suppose also that there is a computable ¥; formula ¢ (b, b', u, v)
that, for any tuples b, b’ satisfying ¢(X), defines a specific |somorph|sm
fp from Ag onto Aj,. We suppose that for each b satisfying ¢, fp5 IS
the identity isomorphism, and for any b, b/, and b” satisfying ¢,

fy b © fp by = fp - Then there is an effective interpretation of A in B.
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