A unifying approach to Goodstein sequences

Andreas Weiermann jww Tosiyasu Arai, David Fernández-Duque, and Stan Wainer

> Department of Mathematics Ghent University

Logic Colloquium 2019

Reuben L. Goodstein (1912-1985)

In this talk k ranges over integers ≥ 2 .

In this talk k ranges over integers ≥ 2 .

We know $(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$

In this talk k ranges over integers ≥ 2 .

We know
$$(\forall m)(\exists! p, q)[m = k \cdot p + q \land q < k].$$

Write $m =_{k-NF} k \cdot p + q$.

In this talk k ranges over integers ≥ 2 .

We know
$$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$

Write
$$m =_{k-NF} k \cdot p + q$$
.

For normal forms define

$$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$

In this talk k ranges over integers ≥ 2 .

We know
$$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$

Write $m =_{k-NF} k \cdot p + q$.

For normal forms define

$$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$

Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$.

In this talk k ranges over integers ≥ 2 .

We know
$$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$

Write
$$m =_{k-NF} k \cdot p + q$$
.

For normal forms define

$$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$

Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$.

Theorem

 $(\forall m)(\exists I)[m_I=0]$ is true but unprovable in $I\Sigma_1$.

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, l) := \psi_{l+2}(m_l)$. Then $m_l > 0$ yields

$$o(m, l+1) = \psi_{l+3}(m_{l+1})$$

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields

$$o(m, l+1) = \psi_{l+3}(m_{l+1})$$

= $\psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields

$$o(m, l+1) = \psi_{l+3}(m_{l+1})$$

$$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$

$$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, l) := \psi_{l+2}(m_l)$. Then $m_l > 0$ yields

$$o(m, l+1) = \psi_{l+3}(m_{l+1})$$

$$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$

$$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$

$$= \psi_{l+2}(m_{l}) = o(m, l)$$

Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$.

Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$.

Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields

$$o(m, l+1) = \psi_{l+3}(m_{l+1})$$

$$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$

$$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$

$$= \psi_{l+2}(m_{l}) = o(m, l)$$

For proving independence relate Goodstein to hydras and use $\psi_{k+1}(m\{k \leftarrow k+1\}-1) \geq (\psi_k m)[k]$.

Define a set T^k of formal terms (polynomials) as follows.

Define a set T^k of formal terms (polynomials) as follows.

 $1 n \in \mathbb{N} \Rightarrow n \in T^k.$

Define a set T^k of formal terms (polynomials) as follows.

- 2 If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$.

Define a set T^k of formal terms (polynomials) as follows.

- $n \in \mathbb{N} \Rightarrow n \in T^k$.
- If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$

Define a set T^k of formal terms (polynomials) as follows.

- If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$

Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$.

Define a set T^k of formal terms (polynomials) as follows.

- $n \in \mathbb{N} \Rightarrow n \in T^k$.
- If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$

Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$.

Proposition

If $m = k \cdot a + b$ with $a, b \in \mathbb{N}$ (here no normal form for m is assumed) then

$$m\{k \leftarrow k+1\} \ge (k+1) \cdot a\{k \leftarrow k+1\} + b\{k \leftarrow k+1\}.$$

Define a set T^k of formal terms (polynomials) as follows.

- 2 If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$

Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$.

Proposition

- If $m = k \cdot a + b$ with $a, b \in \mathbb{N}$ (here no normal form for m is assumed) then $m\{k \leftarrow k+1\} \ge (k+1) \cdot a\{k \leftarrow k+1\} + b\{k \leftarrow k+1\}.$
- If for $t \in T^k$ we have $t[X := k]^{\mathbb{N}} = m$ then $m\{k \leftarrow k+1\} = t^m[X := k+1] \ge t[X := k+1]$. (Maximality of normal form under base change.)

Fix a selection strategy *s* choosing terms for numbers.

Fix a selection strategy s choosing terms for numbers. Let m be given.

Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$.

Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined.

Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. According to s choose t such that $t[X := l+2]^{\mathbb{N}} = m_l^s$.

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$.

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy.

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then

$$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then

$$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$

 $\leq t^{m_l^s}[X := l+3] - 1 \text{ term-maximality}$

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then

$$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$

 $\leq t^{m_l^s}[X := l+3] - 1$ term-maximality
 $\leq t^{m_l}[X := l+3] - 1$ i.h. and base change monotonicity

Theorem

 $\forall s \forall m \exists Im_I^s = 0.$

Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then

$$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$

 $\leq t^{m_l^s}[X := l+3] - 1$ term-maximality
 $\leq t^{m_l}[X := l+3] - 1$ i.h. and base change monotonicity
 $= m_l\{l+2 \leftarrow l+3\} - 1 = m_{l+1}.$

We know

$$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$

We know

$$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$

Write $m =_{k-NF} k^r \cdot p + q$.

We know

$$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$

Write
$$m =_{k-NF} k^r \cdot p + q$$
.

For
$$m =_{k-NF} k^r \cdot p + q$$
 define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$.

We know

$$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$

Write $m =_{k-NF} k^r \cdot p + q$.

For
$$m =_{k-NF} k^r \cdot p + q$$
 define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$.

Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l+2 \leftarrow l+3 \} - 1$. Otherwise $m_{l+1} := 0$.

We know

$$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$

Write $m =_{k-NF} k^r \cdot p + q$.

For
$$m =_{k-NF} k^r \cdot p + q$$
 define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$.

Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$.

Theorem

 $(\forall m)(\exists I)[m_I=0]$ is true but unprovable in PA.

Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$.

Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$.

Let $o(m, I) := \psi_{I+2}(m_I)$. Then as before $m_I > 0$ yields o(m, I+1) < o(m, I).

Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$.

Let $o(m, l) := \psi_{l+2}(m_l)$. Then as before $m_l > 0$ yields o(m, l+1) < o(m, l).

For proving independence relate Goodstein to hydras and use $\psi_{k+1}(m\{k \leftarrow k+1\}-1) \geq (\psi_k m)[k]$.

Define a set T^k of formal exponential terms as follows.

Define a set T^k of formal exponential terms as follows.

 $1 0 \in T^k.$

Define a set T^k of formal exponential terms as follows.

- $\mathbf{1} \mathbf{0} \in T^k$.

Define a set T^k of formal exponential terms as follows.

- 1 $0 \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in \mathcal{T}^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$

Define a set T^k of formal exponential terms as follows.

- $\mathbf{1} \mathbf{0} \in T^k$.

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$

Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$.

Define a set T^k of formal exponential terms as follows.

- $1 0 \in T^k.$

Proposition

$$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$

Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$.

Proposition

If $m = k^a \cdot b + c$ with $a, b, c \in \mathbb{N}$ (no nf is assumed) then $m\{k \leftarrow k+1\} \ge (k+1)^{a\{k \leftarrow k+1\}} \cdot b\{k \leftarrow k+1\} + c\{k \leftarrow k+1\}.$

Define a set T^k of formal exponential terms as follows.

- $\mathbf{1} \quad \mathbf{0} \in T^k.$

Proposition

 $(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$

Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$.

Proposition

- If $m = k^a \cdot b + c$ with $a, b, c \in \mathbb{N}$ (no nf is assumed) then $m\{k \leftarrow k+1\} \ge (k+1)^{a\{k \leftarrow k+1\}} \cdot b\{k \leftarrow k+1\} + c\{k \leftarrow k+1\}.$
- If for $t \in T^k$ we have $t[X := k]^{\mathbb{N}} = m$ then $m\{k \leftarrow k+1\} = t^m[X := k+1] \ge t[X := k+1]$. (value maximality of normal forms under base change.)

Fix a selection strategy *s* choosing exponential terms for numbers.

Fix a selection strategy s choosing exponential terms for numbers. Let m be given.

Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$.

Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined.

Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. According to s choose t such that $t[X := l + 2]^{\mathbb{N}} = m_l^s$.

Theorem

 $(\forall s)(\forall m)(\exists l)[m_l^s=0].$

Theorem

 $(\forall s)(\forall m)(\exists l)[m_l^s=0].$

Proof. To prove $m_l^s \le m_l$ by induction we again use monotonicity under base change and normal form value maximality after base change.

Theorem

 $(\forall s)(\forall m)(\exists l)[m_l^s=0].$

Proof. To prove $m_l^s \le m_l$ by induction we again use monotonicity under base change and normal form value maximality after base change.

Remark: For polynomials and exponential polynominals the k-normal forms also produce shortest possible terms representations for numbers.

Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$.

Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk.

Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$.

Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x.

Let Sk be the least set of unary functions such that $x \mapsto 0 \in \operatorname{Sk}$ and such that with $f,g \in \operatorname{Sk}$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in \operatorname{Sk}$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x. We have that $t^m = \max_{\prec} \{f \in \operatorname{Exp} : f[X := k] = m\}$ and this induces a natural Goodstein principle for Exp .

Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f,g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x. We have that $t^m = \max_{\prec} \{f \in Exp : f[X := k] = m\}$ and this induces a natural Goodstein principle for Exp. It is open whether the full Skolem class induces a natural

Andreas Weiermann

Goodstein principle.

Goodstein for Ackermann

Recall the definition of the Ackermann function.

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$
 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$
 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k, b)$.

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k, b)$. For this a pick the b such that $m = A_a(k, b)$ and write $m = A_a(k, b)$.

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$.

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise.

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise.

Theorem

$$(\forall m)(\exists I)[m_I=0].$$

Recall the definition of the Ackermann function.

$$A_0(k,b) := b+1$$

 $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$
 $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$

For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise.

Theorem

$$(\forall m)(\exists I)[m_I=0].$$

Proof: This is not straight forward. Monotonicity under base change fails e.g. for $m = A_1(k, A_0(k, A_1(k, \cdot)^{k-1}(1)))) > m-1$.

So we switch to new normal forms based on maximality under base change, prove termination for those Goodstein sequences and show that these dominate the ones under consideration.

Write $A_a(b)$ for $A_a(k,b)$. For m choose a_0 to be maximal with $A_{a_0}(0) \leq m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \leq m$. Write $A_a(b)$ for $A_a(k,b)$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m = \sum_{k=N}^n A_{a_0}(b_0)$.

For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$.

If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$.

Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_0}(b_n) < m$.

For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$.

If $A_{a_0}(b_0) = m$ then we write $m = A_{a_0}(b_0)$.

Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$.

Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$.

For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$.

If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$.

Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$.

Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$.

This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$.

For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$.

If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$.

Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \ldots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$.

Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$.

This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$.

For $m =_{k-\text{max-NF}} A_a(b)$ define

 $m[k \leftarrow k+1] := A_{a[k \leftarrow k+1]}(k+1, b[k \leftarrow k+1]).$

For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$.

If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$.

Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$.

Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$.

This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$.

For $m =_{k-\text{max-NF}} A_a(b)$ define

$$m[k \leftarrow k+1] := A_{a[k \leftarrow k+1]}(k+1, b[k \leftarrow k+1]).$$

Proposition

$$m < n \Rightarrow m[k \leftarrow k+1] < n[k \leftarrow k+1]$$
).

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$.

Theorem

 $(\forall m)(\exists l)[m_l^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$.

Theorem

 $(\forall m)(\exists l)[m_l^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l).

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l).

Proposition

Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$.

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l).

Proposition

Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$.

Proposition

 $m_l \leq m_l^{\max}$. Hence $(\forall m)(\exists l)[m_l = 0]$.

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l).

Proposition

Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$.

Proposition

 $m_l \leq m_l^{\text{max}}$. Hence $(\forall m)(\exists l)[m_l = 0]$.

Finally fix a strategy s for choosing Ackermannian terms.

Theorem

 $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.)

Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l).

Proposition

Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \geq A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$.

Proposition

 $m_l \leq m_l^{\max}$. Hence $(\forall m)(\exists l)[m_l = 0]$.

Finally fix a strategy s for choosing Ackermannian terms.

Proposition

 $m_I^s \leq m_I^{\text{max}}$. Hence $(\forall s)(\forall m)(\exists I)[m_I^s = 0]$.

Our approach extends to various functions A_{α} where α is an ordinal.

If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀.

If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀. (Arai, Fernández-Duque, Wainer, W.: to appear in the Proceedings of the AMS).

If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀. (Arai, Fernández-Duque, Wainer, W.: to appear in the Proceedings of the AMS). We firmly believe that the result we presented will lead to new notations system on natural numbers with intriguing properties.

Thank you for listening.

