A unifying approach to Goodstein sequences Andreas Weiermann jww Tosiyasu Arai, David Fernández-Duque, and Stan Wainer > Department of Mathematics Ghent University Logic Colloquium 2019 # Reuben L. Goodstein (1912-1985) In this talk k ranges over integers ≥ 2 . In this talk k ranges over integers ≥ 2 . We know $(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$ In this talk k ranges over integers ≥ 2 . We know $$(\forall m)(\exists! p, q)[m = k \cdot p + q \land q < k].$$ Write $m =_{k-NF} k \cdot p + q$. In this talk k ranges over integers ≥ 2 . We know $$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$ Write $$m =_{k-NF} k \cdot p + q$$. For normal forms define $$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$ In this talk k ranges over integers ≥ 2 . We know $$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$ Write $m =_{k-NF} k \cdot p + q$. For normal forms define $$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$ Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$. In this talk k ranges over integers ≥ 2 . We know $$(\forall m)(\exists ! p, q)[m = k \cdot p + q \land q < k].$$ Write $$m =_{k-NF} k \cdot p + q$$. For normal forms define $$m\{k \leftarrow k+1\} := (k+1) \cdot p\{k \leftarrow k+1\} + q \text{ where } 0\{k \leftarrow k+1\} = 0.$$ Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$. #### **Theorem** $(\forall m)(\exists I)[m_I=0]$ is true but unprovable in $I\Sigma_1$. Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, l) := \psi_{l+2}(m_l)$. Then $m_l > 0$ yields $$o(m, l+1) = \psi_{l+3}(m_{l+1})$$ Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields $$o(m, l+1) = \psi_{l+3}(m_{l+1})$$ = $\psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$ Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields $$o(m, l+1) = \psi_{l+3}(m_{l+1})$$ $$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$ $$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$ Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, l) := \psi_{l+2}(m_l)$. Then $m_l > 0$ yields $$o(m, l+1) = \psi_{l+3}(m_{l+1})$$ $$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$ $$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$ $$= \psi_{l+2}(m_{l}) = o(m, l)$$ Proof. For normal forms define $\psi_k m := \omega \cdot \psi_k p + q$ where $\psi_k 0 := 0$. Then $m < n \Rightarrow \psi_k m < \psi_k n$ and $\psi_{k+1}(m\{k \leftarrow k+1\}) = \psi_k m$. Let $o(m, I) := \psi_{I+2}(m_I)$. Then $m_I > 0$ yields $$o(m, l+1) = \psi_{l+3}(m_{l+1})$$ $$= \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\} - 1)$$ $$< \psi_{l+3}(m_{l}\{l+2 \leftarrow l+3\})$$ $$= \psi_{l+2}(m_{l}) = o(m, l)$$ For proving independence relate Goodstein to hydras and use $\psi_{k+1}(m\{k \leftarrow k+1\}-1) \geq (\psi_k m)[k]$. Define a set T^k of formal terms (polynomials) as follows. Define a set T^k of formal terms (polynomials) as follows. $1 n \in \mathbb{N} \Rightarrow n \in T^k.$ Define a set T^k of formal terms (polynomials) as follows. - 2 If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$. Define a set T^k of formal terms (polynomials) as follows. - $n \in \mathbb{N} \Rightarrow n \in T^k$. - If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$. #### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$ Define a set T^k of formal terms (polynomials) as follows. - If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$. #### Proposition $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$ Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$. Define a set T^k of formal terms (polynomials) as follows. - $n \in \mathbb{N} \Rightarrow n \in T^k$. - If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$. #### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$ Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$. #### **Proposition** If $m = k \cdot a + b$ with $a, b \in \mathbb{N}$ (here no normal form for m is assumed) then $$m\{k \leftarrow k+1\} \ge (k+1) \cdot a\{k \leftarrow k+1\} + b\{k \leftarrow k+1\}.$$ Define a set T^k of formal terms (polynomials) as follows. - 2 If $t \in T^k \land n \in \mathbb{N} \Rightarrow X \cdot t + n \in T^k$. #### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$ Proof: For $m =_{k-NF} k \cdot p + q$ put $t^m := X \cdot t^p + q$ where $t^0 := 0$. #### **Proposition** - If $m = k \cdot a + b$ with $a, b \in \mathbb{N}$ (here no normal form for m is assumed) then $m\{k \leftarrow k+1\} \ge (k+1) \cdot a\{k \leftarrow k+1\} + b\{k \leftarrow k+1\}.$ - If for $t \in T^k$ we have $t[X := k]^{\mathbb{N}} = m$ then $m\{k \leftarrow k+1\} = t^m[X := k+1] \ge t[X := k+1]$. (Maximality of normal form under base change.) Fix a selection strategy *s* choosing terms for numbers. Fix a selection strategy s choosing terms for numbers. Let m be given. Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$. Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. Fix a selection strategy s choosing terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. According to s choose t such that $t[X := l+2]^{\mathbb{N}} = m_l^s$. #### **Theorem** $\forall s \forall m \exists Im_I^s = 0.$ #### Theorem $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. #### Theorem $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. #### Theorem $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then #### Theorem $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then $$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$ ### **Theorem** $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then $$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$ $\leq t^{m_l^s}[X := l+3] - 1 \text{ term-maximality}$ ### **Theorem** $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then $$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$ $\leq t^{m_l^s}[X := l+3] - 1$ term-maximality $\leq t^{m_l}[X := l+3] - 1$ i.h. and base change monotonicity ### **Theorem** $\forall s \forall m \exists Im_I^s = 0.$ Proof. We use: $m < n \Rightarrow m\{k \leftarrow k+1\} < n\{k \leftarrow k+1\}$. We prove by induction that $m_l^s \le m_l$ for all l where m_l refers to the normal form strategy. For the induction step assume $m_l^s > 0$ and $m_l^s = t[X := l+2]$ according to s. Then $$m_{l+1}^s = t[X := l+3]^{\mathbb{N}} - 1$$ $\leq t^{m_l^s}[X := l+3] - 1$ term-maximality $\leq t^{m_l}[X := l+3] - 1$ i.h. and base change monotonicity $= m_l\{l+2 \leftarrow l+3\} - 1 = m_{l+1}.$ ### We know $$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$ ### We know $$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$ Write $m =_{k-NF} k^r \cdot p + q$. #### We know $$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$ Write $$m =_{k-NF} k^r \cdot p + q$$. For $$m =_{k-NF} k^r \cdot p + q$$ define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$. ### We know $$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$ Write $m =_{k-NF} k^r \cdot p + q$. For $$m =_{k-NF} k^r \cdot p + q$$ define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$. Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l+2 \leftarrow l+3 \} - 1$. Otherwise $m_{l+1} := 0$. #### We know $$(\forall m \geq 1)(\exists ! p, q, r)[m = k^r \cdot p + q \wedge k^r \leq m < k^{r+1} \wedge q < k^r \wedge p < k].$$ Write $m =_{k-NF} k^r \cdot p + q$. For $$m =_{k-NF} k^r \cdot p + q$$ define $m\{k \leftarrow k+1\} := (k+1)^{r\{k \leftarrow k+1\}} \cdot p + q\{k \leftarrow k+1\}$ where $0\{k \leftarrow k+1\} = 0$. Given m define m_l as follows: $m_0 := m$. If $m_l > 0$ then $m_{l+1} = m_l \{ l + 2 \leftarrow l + 3 \} - 1$. Otherwise $m_{l+1} := 0$. ### **Theorem** $(\forall m)(\exists I)[m_I=0]$ is true but unprovable in PA. Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$. Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$. Let $o(m, I) := \psi_{I+2}(m_I)$. Then as before $m_I > 0$ yields o(m, I+1) < o(m, I). Proof. For $m =_{k-NF} k^r \cdot p + q$ define $\psi_k m := \omega^{\psi_k r} \cdot p + \psi_k q$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l)$. Then as before $m_l > 0$ yields o(m, l+1) < o(m, l). For proving independence relate Goodstein to hydras and use $\psi_{k+1}(m\{k \leftarrow k+1\}-1) \geq (\psi_k m)[k]$. Define a set T^k of formal exponential terms as follows. Define a set T^k of formal exponential terms as follows. $1 0 \in T^k.$ Define a set T^k of formal exponential terms as follows. - $\mathbf{1} \mathbf{0} \in T^k$. Define a set T^k of formal exponential terms as follows. - 1 $0 \in T^k$. ### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in \mathcal{T}^k)\big[m = t^m[X := k]^{\mathbb{N}}\big].$$ Define a set T^k of formal exponential terms as follows. - $\mathbf{1} \mathbf{0} \in T^k$. ### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$ Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$. Define a set T^k of formal exponential terms as follows. - $1 0 \in T^k.$ ### **Proposition** $$(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$$ Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$. ### **Proposition** If $m = k^a \cdot b + c$ with $a, b, c \in \mathbb{N}$ (no nf is assumed) then $m\{k \leftarrow k+1\} \ge (k+1)^{a\{k \leftarrow k+1\}} \cdot b\{k \leftarrow k+1\} + c\{k \leftarrow k+1\}.$ Define a set T^k of formal exponential terms as follows. - $\mathbf{1} \quad \mathbf{0} \in T^k.$ ### **Proposition** $(\forall m)(\exists \text{ a canonical } t^m \in T^k)[m = t^m[X := k]^{\mathbb{N}}].$ Proof: For $m =_{k-NF} k^r \cdot p + q$ put $t^m := X^{t^r} \cdot t^p + t^q$ where $t^0 := 0$. ### Proposition - If $m = k^a \cdot b + c$ with $a, b, c \in \mathbb{N}$ (no nf is assumed) then $m\{k \leftarrow k+1\} \ge (k+1)^{a\{k \leftarrow k+1\}} \cdot b\{k \leftarrow k+1\} + c\{k \leftarrow k+1\}.$ - If for $t \in T^k$ we have $t[X := k]^{\mathbb{N}} = m$ then $m\{k \leftarrow k+1\} = t^m[X := k+1] \ge t[X := k+1]$. (value maximality of normal forms under base change.) Fix a selection strategy *s* choosing exponential terms for numbers. Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$. Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. Fix a selection strategy s choosing exponential terms for numbers. Let m be given. Let $m_0^s := m$. Assume that $m_l^s > 0$ is defined. According to s choose t such that $t[X := l + 2]^{\mathbb{N}} = m_l^s$. #### **Theorem** $(\forall s)(\forall m)(\exists l)[m_l^s=0].$ #### **Theorem** $(\forall s)(\forall m)(\exists l)[m_l^s=0].$ Proof. To prove $m_l^s \le m_l$ by induction we again use monotonicity under base change and normal form value maximality after base change. #### **Theorem** $(\forall s)(\forall m)(\exists l)[m_l^s=0].$ Proof. To prove $m_l^s \le m_l$ by induction we again use monotonicity under base change and normal form value maximality after base change. **Remark:** For polynomials and exponential polynominals the k-normal forms also produce shortest possible terms representations for numbers. Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f, g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x. Let Sk be the least set of unary functions such that $x \mapsto 0 \in \operatorname{Sk}$ and such that with $f,g \in \operatorname{Sk}$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in \operatorname{Sk}$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x. We have that $t^m = \max_{\prec} \{f \in \operatorname{Exp} : f[X := k] = m\}$ and this induces a natural Goodstein principle for Exp . Let Sk be the least set of unary functions such that $x \mapsto 0 \in Sk$ and such that with $f,g \in Sk$ we have $x \mapsto f(x) + g(x), x \mapsto f(x) \cdot g(x), x \mapsto f(x)^{g(x)} \in Sk$. Let \prec be the ordering of eventual domination on Sk. Then \prec is a well ordering of order type in $[\varepsilon_0, \varphi_2(0)]$. Let Exp be the subclass where closure under $x \mapsto f(x)^{g(x)}$ is only assumed for f(x) = x. We have that $t^m = \max_{\prec} \{f \in Exp : f[X := k] = m\}$ and this induces a natural Goodstein principle for Exp. It is open whether the full Skolem class induces a natural Andreas Weiermann Goodstein principle. ### Goodstein for Ackermann Recall the definition of the Ackermann function. Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k, b)$. Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k, b)$. For this a pick the b such that $m = A_a(k, b)$ and write $m = A_a(k, b)$. Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise. Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise. #### **Theorem** $$(\forall m)(\exists I)[m_I=0].$$ Recall the definition of the Ackermann function. $$A_0(k,b) := b+1$$ $A_{a+1}(k,0) := A_a(k,\cdot)^k(1)$ $A_{a+1}(k,b+1) := A_a(k,\cdot)^k(A_{a+1}(k,b))$ For $m \ge 1$ let a be maximal such that there is a b such that $m = A_a(k,b)$. For this a pick the b such that $m = A_a(k,b)$ and write $m =_{k-NF} A_a(k,b)$. For $m =_{k-NF} A_a(k,b)$ define $m\{k \leftarrow k+1\} := A_{a\{k \leftarrow k+1\}}(k+1,b\{k \leftarrow k+1\})$ where $0\{k \leftarrow k+1\} := 0$. Define $m_0 := m$ and for $m_l > 0$ put $m_{l+1} := m_l[l+2 := l+3] - 1$ and 0 otherwise. #### **Theorem** $$(\forall m)(\exists I)[m_I=0].$$ Proof: This is not straight forward. Monotonicity under base change fails e.g. for $m = A_1(k, A_0(k, A_1(k, \cdot)^{k-1}(1)))) > m-1$. So we switch to new normal forms based on maximality under base change, prove termination for those Goodstein sequences and show that these dominate the ones under consideration. Write $A_a(b)$ for $A_a(k,b)$. For m choose a_0 to be maximal with $A_{a_0}(0) \leq m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \leq m$. Write $A_a(b)$ for $A_a(k,b)$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m = \sum_{k=N}^n A_{a_0}(b_0)$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$. Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_0}(b_n) < m$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m = A_{a_0}(b_0)$. Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$. Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$. Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$. Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$. This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$. For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$. Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \ldots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$. Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$. This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$. For $m =_{k-\text{max-NF}} A_a(b)$ define $m[k \leftarrow k+1] := A_{a[k \leftarrow k+1]}(k+1, b[k \leftarrow k+1]).$ For m choose a_0 to be maximal with $A_{a_0}(0) \le m$. Choose then b_0 to be maximal such that $A_{a_0}(b_0) \le m$. If $A_{a_0}(b_0) = m$ then we write $m =_{k-NF} A_{a_0}(b_0)$. Assume $A_{a_0}(b_0) < m$. Assume that $a_n, b_n, \dots, a_0, b_0$ are defined and that $A_{a_n}(b_n) < m$. Choose a_{n+1} be maximal such that $A_{a_{n+1}}(A_{a_n}(b_n)) \leq m$ and then choose b_{n+1} be maximal such that $A_{a_{n+1}}(b_{n+1}) \leq m$. This procedure stops at some time n with $m = A_{a_n}(b_n)$ and we write $m = A_{a_n}(b_n)$. For $m =_{k-\text{max-NF}} A_a(b)$ define $$m[k \leftarrow k+1] := A_{a[k \leftarrow k+1]}(k+1, b[k \leftarrow k+1]).$$ ### Proposition $$m < n \Rightarrow m[k \leftarrow k+1] < n[k \leftarrow k+1]$$). #### **Theorem** $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) #### Theorem $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. #### Theorem $(\forall m)(\exists l)[m_l^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. #### **Theorem** $(\forall m)(\exists l)[m_l^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l). #### Theorem $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l). ### Proposition Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$. ### **Theorem** $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l). ### Proposition Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$. ## **Proposition** $m_l \leq m_l^{\max}$. Hence $(\forall m)(\exists l)[m_l = 0]$. ### **Theorem** $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l). ### Proposition Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \ge A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$. ### **Proposition** $m_l \leq m_l^{\text{max}}$. Hence $(\forall m)(\exists l)[m_l = 0]$. Finally fix a strategy s for choosing Ackermannian terms. ### **Theorem** $(\forall m)(\exists I)[m_I^{\max}=0]$ (but this is unprovable in PA.) Proof. $m =_{k-\text{max-NF}} A_a(b)$ define $\psi_k m := \overline{\varphi}(\psi_k a, \psi_k b)$ where $\psi_k 0 := 0$. Let $o(m, l) := \psi_{l+2}(m_l^{\text{max}})$. Then for $m_l > 0$ we find o(m, l+1) < o(m, l). ### Proposition Assume that $m = A_p(k, q)$ where $p, q \in \mathbb{N}$ but no normal form is assumed. Then $m[k \leftarrow k+1] \geq A_{p[k \leftarrow k+1]}(k+1, q[k \leftarrow k+1])$. ### Proposition $m_l \leq m_l^{\max}$. Hence $(\forall m)(\exists l)[m_l = 0]$. Finally fix a strategy s for choosing Ackermannian terms. ## **Proposition** $m_I^s \leq m_I^{\text{max}}$. Hence $(\forall s)(\forall m)(\exists I)[m_I^s = 0]$. Our approach extends to various functions A_{α} where α is an ordinal. If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀. If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀. (Arai, Fernández-Duque, Wainer, W.: to appear in the Proceedings of the AMS). If we use in the situation of finite α the new base function $A_0(k,b)=k^b$ then the resulting Ackermannian Goodstein principle is independent of ATR₀. (Arai, Fernández-Duque, Wainer, W.: to appear in the Proceedings of the AMS). We firmly believe that the result we presented will lead to new notations system on natural numbers with intriguing properties. ## Thank you for listening.