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The central theorem

Let α be a lower-semicomputable (or left-c.e.) real in [0, 1]. The
following are equivalent:

(i) α is Martin-Löf random
(ii) α = ΩU =

∑
n 2−KU(n) for some universal prefix-free

machine U
(iii) α =

∑
n m(n) for some maximal lower-semicomputable

semi-measure m
(iv) α is Solovay-complete (maximal for the Solovay order, where

β ≤S α if kα− β is left-c.e. for some integer k)

(Combination of several results by Chaitin, Solovay, Calude et al.,
Kučera and Slaman).
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The Kraft-Chaitin theorem

On the other hand, the Kraft-Chaitin theorem tells us that, if we are
not concerned with universality, we have the uniform equivalence:

(i) α is left-c.e. in [0, 1]
(ii) α = ΩM =

∑
n 2−KM(n) for some prefix-free machine M

(iii) α =
∑

n m(n) for some lower-semicomputable
semi-measure m
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Uniform construction of universal objects

Question (Barmpalias and Lewis-Pye): Can the two be combined?

In other words, suppose you are given an index for a left-c.e. real
α ∈ [0, 1] together with the promise that α is random. Can you
uniformly build:
• A universal prefix-free machine U such that

∑
n 2−KU(n) = α?

• A maximal lower-semicomputable semimeasure m such that∑
n m(n) = α?
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Uniform construction of universal objects

We were able to prove:

Theorem
One
cannot
uniformly
build
a
universal
prefix-free
machine U from
the
index
of
a
Martin-Löf
random α.

But
one
can
uniformly
build
a
maximal
lower-semicomputable
semimeasure!
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Non-uniformity for machines

We sketch the proof of non-uniformity for machines. Suppose that a
universal machine can uniformly be constructed from a random real.

We build a left-c.e. random α. By the recursion theorem we can
know its index and thus know which machine U we are up against.

We build our own prefix-free machine M and want to ensure that
either

∑
n 2−KU(n) ̸= α

or there is no constant c such that KU ≤ KM + c.
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Non-uniformity for machines

During the construction, we monitor ΩU =
∑

n 2−KU(n).

Important: if at any stage s we notice that ΩU[s] > α[s], then we
immediately win by picking a random γ in the interval [α[s],ΩU[s]]
and set α = γ.

Thus we can assume that the opponent “stays below us” (ΩU < α)
at all times.
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Non-uniformity for machines

We want to meet the requirements

(Rc) : ΩU ̸= α or KU(σ) > KM(σ) + c for some σ

Let us fix a c and try to deal with one requirement.
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Non-uniformity for machines

The strategy: α moves towards a Martin-Löf random β fixed in
advance.

Our machine M issues descriptions of type M(0k1) = τ. We
suppose we have already issued some descriptions into our
machine M, and find a program k such that 0k1 is not yet in the
domain of M.

As we move towards β, we monitor ΩU which as discussed must
remain below us. We wait for a stage where ΩU gets very close to α

(say, 2−c−k−4-close).
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Non-uniformity for machines

Maybe this does not happen, in which case we cannot have, in the
limit, ΩU = α, our requirement is satisfied.

If it does, we issue a description M(0k1) = σ for a fresh σ (not seen
so far in the range of U).

This puts the opponent in a bad spot. Either he tries to match our
description by issuing a new U(p) = σ, with |p| ≤ |0k1|+ c, but
then ΩU becomes greater than α! (and we win). Or he never
matches our description and we satisfy our requirement by ensuring
KU(σ) > KM(σ) + c
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Non-uniformity for machines

But, we cannot declare victory at this point, because we still need to
make α Martin-Löf random.

If we keep moving towards β, there is the risk that we eventually
become 2−c−k-far from ΩU, in which case the opponent now has
enough space to issue his description without going over α.

What we do instead is move towards β using milestones. We pick
an intermediate β ′ which is random and ≈ 2−c−d−6 far from our
current α.

Then either the opponent follows us, and we pick a new
intermediate β ′ while having made progress towards the real β. Or
he does not and the requirement is satisfied.
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Layerwise uniformity?

This non-uniformity result does not rule out the possibility of a
“layerwise uniform” construction.

Recall that a layerwise
computable function is a function F defined
on all Martin-Löf random reals, such that F(x) can be uniformly
computed given x together
with
an
upper
bound
on
the
randomness
deficiency
of x.

Example: F(x) =
∑

n
(−1)x(n)

n .
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Layerwise uniformity?

So could we have a uniform construction of a machine if given not
only α but also a bound on its randomness deficiency?

Theorem
Yes
and
no.
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Layerwise uniformity?

Layerwise computability requires that the answer is independent
from the given bound on randomness deficiency. In particular, a
layerwise computable function is ∅ ′-computable.

And the following stronger theorem holds:

Theorem
One
cannot ∅’-uniformly
produce
an
index
of
a
universal
prefix-free
machine U from
the
index
of
a
Martin-Löf
random α.

0. 14/19



Layerwise uniformity?

Layerwise computability requires that the answer is independent
from the given bound on randomness deficiency. In particular, a
layerwise computable function is ∅ ′-computable.

And the following stronger theorem holds:

Theorem
One
cannot ∅’-uniformly
produce
an
index
of
a
universal
prefix-free
machine U from
the
index
of
a
Martin-Löf
random α.

0. 14/19



Layerwise uniformity?
The reason this stronger version is true is that the base theorem is
scalable: we can choose to build α in any rational interval [a, b] we
want.

So now pick a Martin-Löf random ξ, and let ξ0 < ξ1 < . . . be a
computable approximation of ξ by rationals.

We start our construction in the interval [ξ0, ξ1]. If at any point there
is a mind change on the index of the machine U, we move to [ξ1, ξ2]
and restart the construction against the new machine.

If there are finitely many mind changes, we get to perform our
construction. And if there are infinitely many mind changes, our final
α will be ξ while the opponent will have failed to ∅ ′-produce the
index of a machine U.
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Layerwise uniformity?

However, there is a uniform procedure which given a left-c.e. α and
a bound on its randomness deficiency produces a universal
machine U such that ΩU = α (but U depends on the bound).

This follows from previous work. Let Ω be the halting probability of
an optimal machine. Kučera and Slaman showed how from the
index of a left-c.e. real α ∈ [0, 1] one can build a Martin-Löf test
(Vk) such that if α /∈ (Vk) then one can, uniformly in k, produce
approximations α1 < α2 < . . . of α and Ω1 < Ω2 < . . . of Ω
such that (αs+1 − αs) > 2−k(Ωs+1 −Ωs).

Then, as shown by Calude et al., one can use such approximations
to uniformly build a uniform machine with halting probability α.
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One last word on Omega numbers

Let U be a machine such that ΩU is not computable. Then

• There exists a machine V such that ΩU −ΩV is neither left-c.e.
nor right-c.e.

• If U is universal, then V can be taken to be universal as well.

(Due to Downey, Hirschfedlt and Nies for ΩU not random, and
Barmpalias and Lewis-Pye for the remaining case).

Question (Barmpalias and Lewis-Pye): how uniform is this theorem?
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One last word on Omega numbers

Here, it is the universality that helps us!

Theorem
The
construction
of V from U is
not
uniform
in
general, but is uniform
if U is
universal.
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Děkuji
thank you
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