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Reuben L. Goodstein (1912-1985)
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Intro to Goodstein sequences

In this talk k ranges over integers ≥ 2.

We know (∀m)(∃!p,q)[m = k · p + q ∧ q < k ].

Write m =k−NF k · p + q.

For normal forms define
m{k ← k + 1} := (k + 1) · p{k ← k + 1}+ q where
0{k ← k + 1} = 0.

Given m define ml as follows: m0 := m. If ml > 0 then
ml+1 = ml{l + 2← l + 3} − 1. Otherwise ml+1 := 0.

Theorem
(∀m)(∃l)[ml = 0] is true but unprovable in IΣ1.
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Claim : (∀m)(∃l)[ml = 0] is true but unprovable in IΣ1.

Proof. For normal forms define ψkm := ω · ψkp + q where
ψk0 := 0.

Then m < n⇒ ψkm < ψkn and ψk+1(m{k ← k + 1}) = ψkm.

Let o(m, l) := ψl+2(ml). Then ml > 0 yields

o(m, l + 1) = ψl+3(ml+1)

= ψl+3(ml{l + 2← l + 3} − 1)

< ψl+3(ml{l + 2← l + 3})
= ψl+2(ml) = o(m, l)

For proving independence relate Goodstein to hydras and use
ψk+1(m{k ← k + 1} − 1) ≥ (ψkm)[k ].
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Making things independent of normal forms
Define a set T k of formal terms (polynomials) as follows.

1 n ∈ N⇒ n ∈ T k .
2 If t ∈ T k ∧ n ∈ N⇒ X · t + n ∈ T k .

Proposition
(∀m)(∃ a canonical tm ∈ T k )

[
m = tm[X := k ]N

]
.

Proof: For m =k−NF k · p + q put tm := X · tp + q where t0 := 0.

Proposition

1 If m = k · a + b with a,b ∈ N (here no normal form for m is
assumed) then
m{k ← k + 1} ≥ (k + 1) · a{k ← k + 1}+ b{k ← k + 1}.

2 If for t ∈ T k we have t [X := k ]N = m then
m{k ← k + 1} = tm[X := k + 1] ≥ t [X := k + 1]. (Maximality
of normal form under base change.)
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Fix a selection strategy s choosing terms for numbers.

Let m be
given. Let ms

0 := m. Assume that ms
l > 0 is defined. According

to s choose t such that t [X := l + 2]N = ms
l . Put

ms
l+1 := t [X := l + 3]N − 1. Otherwise ms

l+1 := 0.

Theorem
∀s∀m∃lms

l = 0.
Proof. We use: m < n⇒ m{k ← k + 1} < n{k ← k + 1}. We
prove by induction that ms

l ≤ ml for all l where ml refers to the
normal form strategy. For the induction step assume ms

l > 0 and
ms

l = t [X := l + 2] according to s. Then

ms
l+1 = t [X := l + 3]N − 1

≤ tms
l [X := l + 3]− 1 term-maximality

≤ tml [X := l + 3]− 1 i.h. and base change monotonicity
= ml{l + 2← l + 3} − 1 = ml+1.
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Unifying standard Goodstein sequences

We know
(∀m ≥ 1)(∃!p,q, r)[m = k r ·p+q∧k r ≤ m < k r+1∧q < k r∧p < k ].

Write m =k−NF k r · p + q.

For m =k−NF k r · p + q define
m{k ← k + 1} := (k + 1)r{k←k+1} · p + q{k ← k + 1} where
0{k ← k + 1} = 0.

Given m define ml as follows: m0 := m. If ml > 0 then
ml+1 = ml{l + 2← l + 3} − 1. Otherwise ml+1 := 0.

Theorem
(∀m)(∃l)[ml = 0] is true but unprovable in PA.
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Claim : (∀m)(∃l)[ml = 0] is true but unprovable in PA.

Proof. For m =k−NF k r · p + q define ψkm := ωψk r · p + ψkq where
ψk0 := 0.

Let o(m, l) := ψl+2(ml). Then as before ml > 0 yields
o(m, l + 1) < o(m, l).
For proving independence relate Goodstein to hydras and use
ψk+1(m{k ← k + 1} − 1) ≥ (ψkm)[k ].
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Making things independent of normal forms

Define a set T k of formal exponential terms as follows.

1 0 ∈ T k .
2 If s, t ,u ∈ T k ⇒ X s · t + u ∈ T k .

Proposition
(∀m)(∃ a canonical tm ∈ T k )

[
m = tm[X := k ]N

]
.

Proof: For m =k−NF k r · p + q put tm := X t r · tp + tq where t0 := 0.

Proposition

1 If m = ka · b + c with a,b, c ∈ N (no nf is assumed) then
m{k ← k +1} ≥ (k +1)a{k←k+1}·b{k ← k +1}+c{k ← k +1}.

2 If for t ∈ T k we have t [X := k ]N = m then
m{k ← k + 1} = tm[X := k + 1] ≥ t [X := k + 1]. (value
maximality of normal forms under base change.)
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Fix a selection strategy s choosing exponential terms for
numbers.

Let m be given. Let ms
0 := m. Assume that ms

l > 0 is
defined. According to s choose t such that t [X := l + 2]N = ms

l .
Put ms

l+1 := t [X := l + 3]N − 1. Otherwise ms
l+1 := 0.

Theorem
(∀s)(∀m)(∃l)[ms

l = 0].
Proof. To prove ms

l ≤ ml by induction we again use monotonicity
under base change and normal form value maximality after
base change.

Remark: For polynomials and exponential polynominals the
k -normal forms also produce shortest possible terms
representations for numbers.
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Relating Goodstein to the Skolem class

Let Sk be the least set of unary functions such that x 7→ 0 ∈ Sk
and such that with f ,g ∈ Sk we have
x 7→ f (x) + g(x), x 7→ f (x) · g(x), x 7→ f (x)g(x) ∈ Sk.

Let ≺ be the
ordering of eventual domination on Sk. Then ≺ is a well ordering
of order type in [ε0, ϕ2(0)]. Let Exp be the subclass where
closure under x 7→ f (x)g(x) is only assumed for f (x) = x . We
have that tm = max≺{f ∈ Exp : f [X := k ] = m} and this induces
a natural Goodstein principle for Exp.
It is open whether the full Skolem class induces a natural
Goodstein principle.
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Goodstein for Ackermann
Recall the definition of the Ackermann function.

A0(k ,b) := b + 1
Aa+1(k ,0) := Aa(k , ·)k (1)

Aa+1(k ,b + 1) := Aa(k , ·)k (Aa+1(k ,b))

For m ≥ 1 let a be maximal such that there is a b such that
m = Aa(k ,b). For this a pick the b such that m = Aa(k ,b) and
write m =k−NF Aa(k ,b). For m =k−NF Aa(k ,b) define
m{k ← k + 1} := Aa{k←k+1}(k + 1,b{k ← k + 1}) where
0{k ← k + 1} := 0. Define m0 := m and for ml > 0 put
ml+1 := ml [l + 2 := l + 3]− 1 and 0 otherwise.

Theorem
(∀m)(∃l)[ml = 0].
Proof: This is not straight forward. Monotonicity under base
change fails e.g. for m = A1(k ,A0(k ,A1(k , ·)k−1(1)))) > m − 1.
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So we switch to new normal forms based on maximality under
base change, prove termination for those Goodstein sequences
and show that these dominate the ones under consideration.
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Write Aa(b) for Aa(k ,b).

For m choose a0 to be maximal with Aa0(0) ≤ m. Choose then
b0 to be maximal such that Aa0(b0) ≤ m.
If Aa0(b0) = m then we write m =k−NF Aa0(b0).
Assume Aa0(b0) < m. Assume that an,bn, . . . ,a0,b0 are defined
and that Aan(bn) < m.
Choose an+1 be maximal such that Aan+1(Aan(bn)) ≤ m and then
choose bn+1 be maximal such that Aan+1(bn+1) ≤ m.
This procedure stops at some time n with m = Aan(bn) and we
write m =k−max-NF Aan(bn).
For m =k−max-NF Aa(b) define
m[k ← k + 1] := Aa[k←k+1](k + 1,b[k ← k + 1]).

Proposition
m < n⇒ m[k ← k + 1] < n[k ← k + 1]).
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Define mmax
0 := 0 and for mmax

l > 0
mmax

l+1 := mmax
l [l + 2← l + 3]− 1 and 0 otherwise.

Theorem
(∀m)(∃l)[mmax

l = 0] (but this is unprovable in PA.)

Proof. m =k−max-NF Aa(b) define ψkm := ϕ(ψka, ψkb) where
ψk0 := 0. Let o(m, l) := ψl+2(mmax

l ). Then for ml > 0 we find
o(m, l + 1) < o(m, l).

Proposition
Assume that m = Ap(k ,q) where p,q ∈ N but no normal form is
assumed. Then m[k ← k + 1] ≥ Ap[k←k+1](k + 1,q[k ← k + 1]).

Proposition
ml ≤ mmax

l . Hence (∀m)(∃l)[ml = 0].
Finally fix a strategy s for choosing Ackermannian terms.

Proposition
ms

l ≤ mmax
l . Hence (∀s)(∀m)(∃l)[ms

l = 0].
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Our approach extends to various functions Aα where α is an
ordinal.

(Aα)α<ε0 can be treated with the Bachmann-Howard
ordinal.
If we use in the situation of finite α the new base function
A0(k ,b) = kb then the resulting Ackermannian Goodstein
principle is independent of ATR0. (Arai, Fernández-Duque,
Wainer, W.: to appear in the Proceedings of the AMS).
We firmly believe that the result we presented will lead to new
notations system on natural numbers with intriguing properties.
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Thank you for listening.
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