
Induction, search problems and approximate
counting

Neil Thapen

Institute of Mathematics
Czech Academy of Sciences

Joint work with Leszek Ko lodziejczyk

ASL Logic Colloquium 2019, Prague

1 / 25

Motivating question

How does the strength of a theory of arithmetic change, as we
increase the amount of induction?

We measure the strength of a theory by its set of consequences of
some fixed low complexity, say Π1 or Π2.

So we are asking: as we allow more complex formulas as induction
hypotheses,

• are more Π1 sentences provable?

• are more Π2 sentences provable? Are more functions provably
recursive?

2 / 25

Motivating question

How does the strength of a theory of arithmetic change, as we
increase the amount of induction?

We measure the strength of a theory by its set of consequences of
some fixed low complexity, say Π1 or Π2.

So we are asking: as we allow more complex formulas as induction
hypotheses,

• are more Π1 sentences provable?

• are more Π2 sentences provable? Are more functions provably
recursive?

2 / 25

Motivating question

How does the strength of a theory of arithmetic change, as we
increase the amount of induction?

We measure the strength of a theory by its set of consequences of
some fixed low complexity, say Π1 or Π2.

So we are asking: as we allow more complex formulas as induction
hypotheses,

• are more Π1 sentences provable?

• are more Π2 sentences provable? Are more functions provably
recursive?

2 / 25

Classical case - IΣk

The theory IΣk consists of:

A base theory, for which we could take

• the theory of discrete ordered rings, or

• elementary arithmetic, in a language with names for all
Kalmar elementary functions

Plus the induction scheme for all Σk -formulas in the language.

3 / 25

Classical case - IΣk

The theory IΣk consists of:

A base theory, for which we could take

• the theory of discrete ordered rings, or

• elementary arithmetic, in a language with names for all
Kalmar elementary functions

Plus the induction scheme for all Σk -formulas in the language.

3 / 25

Classical case - IΣk

The theory IΣk consists of:

A base theory, for which we could take

• the theory of discrete ordered rings, or

• elementary arithmetic, in a language with names for all
Kalmar elementary functions

Plus the induction scheme for all Σk -formulas in the language.

3 / 25

Π1 and Π2 separations

We have the separation IΣk <Π1 IΣk+1

given by the Π1 sentence Con(IΣk).

There are many interesting characterizations of Π2 consequences.
In particular the class Fk of provably recursive functions of IΣk

are those functions f for which

IΣk ` ∀x∃!yθ(x , y)

where θ is a Σ1 formula for the graph of f .

We can show that Fk+1 contains faster-growing functions than
Fk , and Π2-separate the theories in this way.

4 / 25

Π1 and Π2 separations

We have the separation IΣk <Π1 IΣk+1

given by the Π1 sentence Con(IΣk).

There are many interesting characterizations of Π2 consequences.
In particular the class Fk of provably recursive functions of IΣk

are those functions f for which

IΣk ` ∀x∃!yθ(x , y)

where θ is a Σ1 formula for the graph of f .

We can show that Fk+1 contains faster-growing functions than
Fk , and Π2-separate the theories in this way.

4 / 25

Some complexity notation

• We identify numbers and the corresponding binary strings.
We interpret a variable x as one or the other as convenient.

• We write |x | for the binary length of x , approximately log2(x).

We often write |n|O(1) to mean “polynomial in log2(n)”.

• FP is the class of polynomial time functions.

• The polynomial hierarchy consists of classes of relations
P, Σp

1 , Σp
2 , etc. formed by putting bounded quantifiers in

front of relations from P.

• We may write NP for Σp
1 and coNP for Πp

1 .

5 / 25

Bounded arithmetic

As a base theory we take PV, which has

• a name for every FP function

• universal axioms fixing the basic relationships between them.

(We could instead use Buss’ theory BASIC, in the language +, ·,
etc. With a bit of work, this gives the same hierarchy.)

Definition

• T k
2 := PV + Σb

k -IND

• T2 :=
⋃

k T
k
2 (this is equivalent to I∆0 + Ω1)

Here a Σb
k formula is one of the form

∃y1< t1(x̄) ∀y2< t2(x̄ , y1) . . . θ(x̄ , ȳ)

where t1, . . . , tk are terms (FP functions) and θ is polynomial time.

6 / 25

Bounded arithmetic

As a base theory we take PV, which has

• a name for every FP function

• universal axioms fixing the basic relationships between them.

(We could instead use Buss’ theory BASIC, in the language +, ·,
etc. With a bit of work, this gives the same hierarchy.)

Definition

• T k
2 := PV + Σb

k -IND

• T2 :=
⋃

k T
k
2 (this is equivalent to I∆0 + Ω1)

Here a Σb
k formula is one of the form

∃y1< t1(x̄) ∀y2< t2(x̄ , y1) . . . θ(x̄ , ȳ)

where t1, . . . , tk are terms (FP functions) and θ is polynomial time.

6 / 25

Bounded arithmetic

As a base theory we take PV, which has

• a name for every FP function

• universal axioms fixing the basic relationships between them.

(We could instead use Buss’ theory BASIC, in the language +, ·,
etc. With a bit of work, this gives the same hierarchy.)

Definition

• T k
2 := PV + Σb

k -IND

• T2 :=
⋃

k T
k
2 (this is equivalent to I∆0 + Ω1)

Here a Σb
k formula is one of the form

∃y1< t1(x̄) ∀y2< t2(x̄ , y1) . . . θ(x̄ , ȳ)

where t1, . . . , tk are terms (FP functions) and θ is polynomial time.

6 / 25

Why study bounded arithmetic?

• General proof theoretic questions like - how little reasoning do
we really need to prove something?
(Such as the existence of infinitely many primes)

• Natural framework to ask about the difficulty of doing
complexity theory.
Questions like: is P = NP, or P 6= NP, even consistent?

• By Buss’ witnessing theorem, proofs have computational
content – from a proof, we get an algorithm in the polynomial
hierarchy

• Connections with propositional proof complexity

Back to our motivating question . . .

7 / 25

Why study bounded arithmetic?

• General proof theoretic questions like - how little reasoning do
we really need to prove something?
(Such as the existence of infinitely many primes)

• Natural framework to ask about the difficulty of doing
complexity theory.
Questions like: is P = NP, or P 6= NP, even consistent?

• By Buss’ witnessing theorem, proofs have computational
content – from a proof, we get an algorithm in the polynomial
hierarchy

• Connections with propositional proof complexity

Back to our motivating question . . .

7 / 25

Why study bounded arithmetic?

• General proof theoretic questions like - how little reasoning do
we really need to prove something?
(Such as the existence of infinitely many primes)

• Natural framework to ask about the difficulty of doing
complexity theory.
Questions like: is P = NP, or P 6= NP, even consistent?

• By Buss’ witnessing theorem, proofs have computational
content – from a proof, we get an algorithm in the polynomial
hierarchy

• Connections with propositional proof complexity

Back to our motivating question . . .

7 / 25

Why study bounded arithmetic?

• General proof theoretic questions like - how little reasoning do
we really need to prove something?
(Such as the existence of infinitely many primes)

• Natural framework to ask about the difficulty of doing
complexity theory.
Questions like: is P = NP, or P 6= NP, even consistent?

• By Buss’ witnessing theorem, proofs have computational
content – from a proof, we get an algorithm in the polynomial
hierarchy

• Connections with propositional proof complexity

Back to our motivating question . . .

7 / 25

Π1 consequences

We would like to show: T k
2 <Π1 T k+1

2

Theorem [Paris-Wilkie]

I∆0+exp does not prove Con(Q).

Therefore in particular T k+1
2 6` Con(T k

2).

So we cannot use consistency statements to separate our theories.
Even bounded consistency cannot work. [Buss]

Unclear how to proceed.

8 / 25

Π1 consequences

We would like to show: T k
2 <Π1 T k+1

2

Theorem [Paris-Wilkie]

I∆0+exp does not prove Con(Q).

Therefore in particular T k+1
2 6` Con(T k

2).

So we cannot use consistency statements to separate our theories.
Even bounded consistency cannot work. [Buss]

Unclear how to proceed.

8 / 25

Π1 consequences

We would like to show: T k
2 <Π1 T k+1

2

Theorem [Paris-Wilkie]

I∆0+exp does not prove Con(Q).

Therefore in particular T k+1
2 6` Con(T k

2).

So we cannot use consistency statements to separate our theories.
Even bounded consistency cannot work. [Buss]

Unclear how to proceed.

8 / 25

Π2 consequences

Question: Are there nice characterizations of the “provably
recursive” functions Fk of T k

2 ?

Answer: Yes! Families of TFNP search problems.

Question: Is Fk+1 strictly bigger than Fk , because it contains
faster growing functions?
Answer: No!

Parikh’s theorem

Every provably total function with a bounded graph, in a bounded
theory, is bounded.

In this case, for every k , if f ∈ Fk then |f (x)| is polynomial in |x |.
We cannot separate Π2 consequences by growth rates.

9 / 25

Π2 consequences

Question: Are there nice characterizations of the “provably
recursive” functions Fk of T k

2 ?
Answer: Yes! Families of TFNP search problems.

Question: Is Fk+1 strictly bigger than Fk , because it contains
faster growing functions?
Answer: No!

Parikh’s theorem

Every provably total function with a bounded graph, in a bounded
theory, is bounded.

In this case, for every k , if f ∈ Fk then |f (x)| is polynomial in |x |.
We cannot separate Π2 consequences by growth rates.

9 / 25

Π2 consequences

Question: Are there nice characterizations of the “provably
recursive” functions Fk of T k

2 ?
Answer: Yes! Families of TFNP search problems.

Question: Is Fk+1 strictly bigger than Fk , because it contains
faster growing functions?

Answer: No!

Parikh’s theorem

Every provably total function with a bounded graph, in a bounded
theory, is bounded.

In this case, for every k , if f ∈ Fk then |f (x)| is polynomial in |x |.
We cannot separate Π2 consequences by growth rates.

9 / 25

Π2 consequences

Question: Are there nice characterizations of the “provably
recursive” functions Fk of T k

2 ?
Answer: Yes! Families of TFNP search problems.

Question: Is Fk+1 strictly bigger than Fk , because it contains
faster growing functions?
Answer: No!

Parikh’s theorem

Every provably total function with a bounded graph, in a bounded
theory, is bounded.

In this case, for every k , if f ∈ Fk then |f (x)| is polynomial in |x |.
We cannot separate Π2 consequences by growth rates.

9 / 25

Π2 consequences

Question: Are there nice characterizations of the “provably
recursive” functions Fk of T k

2 ?
Answer: Yes! Families of TFNP search problems.

Question: Is Fk+1 strictly bigger than Fk , because it contains
faster growing functions?
Answer: No!

Parikh’s theorem

Every provably total function with a bounded graph, in a bounded
theory, is bounded.

In this case, for every k , if f ∈ Fk then |f (x)| is polynomial in |x |.
We cannot separate Π2 consequences by growth rates.

9 / 25

∀Σb
1 consequences

Because of Parikh’s theorem, instead of Π2 consequences we
consider the class ∀Σb

1, that is, sentences of the form

∀x∃y< t(x) θ(x , y)

where t ∈ FP and θ is polynomial time.

We would like to show: T k
2 <∀Σb

1
T k+1

2

We would like to use the characterizations Fk of their provably
recursive functions.

Problem

If P = NP, then Fk = FP for all k , as for any true sentence of the
form ∀x∃y< t ϕ(x , y), given x we can find a y in polynomial time.

10 / 25

∀Σb
1 consequences

Because of Parikh’s theorem, instead of Π2 consequences we
consider the class ∀Σb

1, that is, sentences of the form

∀x∃y< t(x) θ(x , y)

where t ∈ FP and θ is polynomial time.

We would like to show: T k
2 <∀Σb

1
T k+1

2

We would like to use the characterizations Fk of their provably
recursive functions.

Problem

If P = NP, then Fk = FP for all k , as for any true sentence of the
form ∀x∃y< t ϕ(x , y), given x we can find a y in polynomial time.

10 / 25

Relativization

So to have a hope of showing separations, we consider relativized
theories.

We add a symbol α for an undefined relation, called an oracle.

We replace PV with PV(α), which talks about polynomial time
machines with an oracle tape for α.

We use PV(α) instead of PV in all our definitions. So for example

T k
2 (α) := PV(α) + Σb

k(α)-IND.

Everything in the rest of the talk is relativized.
For clarity we will not write the (α) in the names of theories etc.

Note that we are still studying induction, just in a slightly bigger,
more flexible language.

11 / 25

Relativization

So to have a hope of showing separations, we consider relativized
theories.

We add a symbol α for an undefined relation, called an oracle.

We replace PV with PV(α), which talks about polynomial time
machines with an oracle tape for α.

We use PV(α) instead of PV in all our definitions. So for example

T k
2 (α) := PV(α) + Σb

k(α)-IND.

Everything in the rest of the talk is relativized.
For clarity we will not write the (α) in the names of theories etc.

Note that we are still studying induction, just in a slightly bigger,
more flexible language.

11 / 25

Relativization

So to have a hope of showing separations, we consider relativized
theories.

We add a symbol α for an undefined relation, called an oracle.

We replace PV with PV(α), which talks about polynomial time
machines with an oracle tape for α.

We use PV(α) instead of PV in all our definitions. So for example

T k
2 (α) := PV(α) + Σb

k(α)-IND.

Everything in the rest of the talk is relativized.
For clarity we will not write the (α) in the names of theories etc.

Note that we are still studying induction, just in a slightly bigger,
more flexible language.

11 / 25

Relativization

So to have a hope of showing separations, we consider relativized
theories.

We add a symbol α for an undefined relation, called an oracle.

We replace PV with PV(α), which talks about polynomial time
machines with an oracle tape for α.

We use PV(α) instead of PV in all our definitions. So for example

T k
2 (α) := PV(α) + Σb

k(α)-IND.

Everything in the rest of the talk is relativized.
For clarity we will not write the (α) in the names of theories etc.

Note that we are still studying induction, just in a slightly bigger,
more flexible language.

11 / 25

Known relativized separations

Theorem

In the relativized setting, T k
2 < T k+1

2

But the complexity of the separating sentence depends on k.
It is ∀Σb

k+1 [Buss-Kraj́ıček]

For ∀Σb
1 consequences, we have

Theorem

In the relativized setting, T 0
2 <∀Σb

1
T 1

2 <∀Σb
1
T 2

2

No higher ∀Σb
1 separations are known. Conceivably T 2

2 =∀Σb
1
T2.

12 / 25

Known relativized separations

Theorem

In the relativized setting, T k
2 < T k+1

2

But the complexity of the separating sentence depends on k.
It is ∀Σb

k+1 [Buss-Kraj́ıček]

For ∀Σb
1 consequences, we have

Theorem

In the relativized setting, T 0
2 <∀Σb

1
T 1

2 <∀Σb
1
T 2

2

No higher ∀Σb
1 separations are known. Conceivably T 2

2 =∀Σb
1
T2.

12 / 25

Known relativized separations

Theorem

In the relativized setting, T k
2 < T k+1

2

But the complexity of the separating sentence depends on k.
It is ∀Σb

k+1 [Buss-Kraj́ıček]

For ∀Σb
1 consequences, we have

Theorem

In the relativized setting, T 0
2 <∀Σb

1
T 1

2 <∀Σb
1
T 2

2

No higher ∀Σb
1 separations are known. Conceivably T 2

2 =∀Σb
1
T2.

12 / 25

Examples of ∀Σb
1 separating principles

The following are provable in T 2
2 but not T 1

2 :

• The injective weak pigeonhole principle iWPHP
For all n, if α determines a map f from 2n to n (by defining
the bits of each f (x)), then there exist x < x ′ < 2n such that
f (x) = f (x ′).

• The herbrandized ordering principle HOP
The ordering principle is a ∀Σb

2 sentence asserting that if α
determines a total ordering on [0, n), then it has a least
element. HOP is a ∀Σb

1 version of this.

The following is provable in T 3
2 but not T 1

2 :

• The finite Ramsey theorem RAM
For all n, if α determines a graph on [0, n), then it has a
homogeneous set of size at least log n/2.

13 / 25

Examples of ∀Σb
1 separating principles

The following are provable in T 2
2 but not T 1

2 :

• The injective weak pigeonhole principle iWPHP
For all n, if α determines a map f from 2n to n (by defining
the bits of each f (x)), then there exist x < x ′ < 2n such that
f (x) = f (x ′).

• The herbrandized ordering principle HOP
The ordering principle is a ∀Σb

2 sentence asserting that if α
determines a total ordering on [0, n), then it has a least
element. HOP is a ∀Σb

1 version of this.

The following is provable in T 3
2 but not T 1

2 :

• The finite Ramsey theorem RAM
For all n, if α determines a graph on [0, n), then it has a
homogeneous set of size at least log n/2.

13 / 25

Examples of ∀Σb
1 separating principles

The following are provable in T 2
2 but not T 1

2 :

• The injective weak pigeonhole principle iWPHP
For all n, if α determines a map f from 2n to n (by defining
the bits of each f (x)), then there exist x < x ′ < 2n such that
f (x) = f (x ′).

• The herbrandized ordering principle HOP
The ordering principle is a ∀Σb

2 sentence asserting that if α
determines a total ordering on [0, n), then it has a least
element. HOP is a ∀Σb

1 version of this.

The following is provable in T 3
2 but not T 1

2 :

• The finite Ramsey theorem RAM
For all n, if α determines a graph on [0, n), then it has a
homogeneous set of size at least log n/2.

13 / 25

Examples of ∀Σb
1 separating principles

The following are provable in T 2
2 but not T 1

2 :

• The injective weak pigeonhole principle iWPHP
For all n, if α determines a map f from 2n to n (by defining
the bits of each f (x)), then there exist x < x ′ < 2n such that
f (x) = f (x ′).

• The herbrandized ordering principle HOP
The ordering principle is a ∀Σb

2 sentence asserting that if α
determines a total ordering on [0, n), then it has a least
element. HOP is a ∀Σb

1 version of this.

The following is provable in T 3
2 but not T 1

2 :

• The finite Ramsey theorem RAM
For all n, if α determines a graph on [0, n), then it has a
homogeneous set of size at least log n/2.

13 / 25

Approximate counting

Theorem

The principles iWPHP, HOP and RAM are all provably in
Jěrábek’s theory APC2 of approximate counting.

APC2 := T 1
2 + sWPHP(FPNP).

Here sWPHP(FPNP) is a scheme asserting that no FPNP function
is a surjection from n to 2n.

In APC2 we can write an expression for the approximate size of a
bounded Σb

1 set, up to a multiplicative error, and use this
expression in inductions.

In this way APC2 can directly formalize many standard counting
arguments in finite combinatorics.

14 / 25

Approximate counting

Theorem

The principles iWPHP, HOP and RAM are all provably in
Jěrábek’s theory APC2 of approximate counting.

APC2 := T 1
2 + sWPHP(FPNP).

Here sWPHP(FPNP) is a scheme asserting that no FPNP function
is a surjection from n to 2n.

In APC2 we can write an expression for the approximate size of a
bounded Σb

1 set, up to a multiplicative error, and use this
expression in inductions.

In this way APC2 can directly formalize many standard counting
arguments in finite combinatorics.

14 / 25

Our question

It seems hard to show T 2
2 <∀Σb

1
T2.

Instead we ask:

Question [Buss-Ko lodziejczyk-T]

Is APC2 <∀Σb
1
T2?

Expected answer: YES

• This would push the boundary where can prove separations
solidly up above T 1

2 .
• We know T 1

2 < APC2 ≤ T 3
2 , so APC2 is not that far from T 2

2

in strength.

Less expected answer: NO

• On the other hand, approximate counting is very useful;
perhaps it can do everything.

• In fact, if we add a parity quantifier to the language, then T2

collapses to APC2 [Buss-Ko lodziejczyk-Zdanowski].

15 / 25

Our question

It seems hard to show T 2
2 <∀Σb

1
T2. Instead we ask:

Question [Buss-Ko lodziejczyk-T]

Is APC2 <∀Σb
1
T2?

Expected answer: YES

• This would push the boundary where can prove separations
solidly up above T 1

2 .
• We know T 1

2 < APC2 ≤ T 3
2 , so APC2 is not that far from T 2

2

in strength.

Less expected answer: NO

• On the other hand, approximate counting is very useful;
perhaps it can do everything.

• In fact, if we add a parity quantifier to the language, then T2

collapses to APC2 [Buss-Ko lodziejczyk-Zdanowski].

15 / 25

Our question

It seems hard to show T 2
2 <∀Σb

1
T2. Instead we ask:

Question [Buss-Ko lodziejczyk-T]

Is APC2 <∀Σb
1
T2?

Expected answer: YES

• This would push the boundary where can prove separations
solidly up above T 1

2 .
• We know T 1

2 < APC2 ≤ T 3
2 , so APC2 is not that far from T 2

2

in strength.

Less expected answer: NO

• On the other hand, approximate counting is very useful;
perhaps it can do everything.

• In fact, if we add a parity quantifier to the language, then T2

collapses to APC2 [Buss-Ko lodziejczyk-Zdanowski].

15 / 25

Our question

It seems hard to show T 2
2 <∀Σb

1
T2. Instead we ask:

Question [Buss-Ko lodziejczyk-T]

Is APC2 <∀Σb
1
T2?

Expected answer: YES

• This would push the boundary where can prove separations
solidly up above T 1

2 .
• We know T 1

2 < APC2 ≤ T 3
2 , so APC2 is not that far from T 2

2

in strength.

Less expected answer: NO

• On the other hand, approximate counting is very useful;
perhaps it can do everything.

• In fact, if we add a parity quantifier to the language, then T2

collapses to APC2 [Buss-Ko lodziejczyk-Zdanowski].

15 / 25

Our result

Theorem

Yes, APC2 <∀Σb
1
T2.

We show that a certain ∀Σb
1 sentence CPLS, which is provable

in T 2
2 , is not provable in APC2.

The principle CPLS is a kind of skolemized Σb
2-induction scheme.

16 / 25

Our result

Theorem

Yes, APC2 <∀Σb
1
T2.

We show that a certain ∀Σb
1 sentence CPLS, which is provable

in T 2
2 , is not provable in APC2.

The principle CPLS is a kind of skolemized Σb
2-induction scheme.

16 / 25

The proof

Recall APC2 := T 1
2 + sWPHP(FPNP).

How do we show unprovability of a ∀Σb
1 sentence in APC2?

By carefully constructing an oracle.

We start with a simpler example:

Theorem [Krajicek]

T 1
2 6` iWPHP.

17 / 25

The proof

Recall APC2 := T 1
2 + sWPHP(FPNP).

How do we show unprovability of a ∀Σb
1 sentence in APC2?

By carefully constructing an oracle.

We start with a simpler example:

Theorem [Krajicek]

T 1
2 6` iWPHP.

17 / 25

The proof

Recall APC2 := T 1
2 + sWPHP(FPNP).

How do we show unprovability of a ∀Σb
1 sentence in APC2?

By carefully constructing an oracle.

We start with a simpler example:

Theorem [Krajicek]

T 1
2 6` iWPHP.

17 / 25

The Prover-Adversary Game

Let ∃y< t θ(n, y) be a Σb
1 statement about an oracle α. For

example, θ might say that y is a witness to iWPHP. Note that it
only every requires |n|O(1) bits of α to make θ(n, y) true or false.

The Adversary claims to know an oracle α for which there is no
witness y < t such that θ(n, y) is true in α.

At each turn the Prover may ask the Adversary for the value of bit
of α; or he may forget a bit, to save memory. If so, the Adversary
can give the bit a different values next time it is asked.

Prover wins when his memory β makes θ(n, y) true for some y < t.

Theorem [Buss-Kraj́ıček]

If T 1
2 ` ∀n∃y< t θ(n, y), then there is a winning strategy for the

Prover in which he never needs to remember more than |n|O(1) bits.

18 / 25

The Prover-Adversary Game

Let ∃y< t θ(n, y) be a Σb
1 statement about an oracle α. For

example, θ might say that y is a witness to iWPHP. Note that it
only every requires |n|O(1) bits of α to make θ(n, y) true or false.

The Adversary claims to know an oracle α for which there is no
witness y < t such that θ(n, y) is true in α.

At each turn the Prover may ask the Adversary for the value of bit
of α; or he may forget a bit, to save memory. If so, the Adversary
can give the bit a different values next time it is asked.

Prover wins when his memory β makes θ(n, y) true for some y < t.

Theorem [Buss-Kraj́ıček]

If T 1
2 ` ∀n∃y< t θ(n, y), then there is a winning strategy for the

Prover in which he never needs to remember more than |n|O(1) bits.

18 / 25

The Prover-Adversary Game

Let ∃y< t θ(n, y) be a Σb
1 statement about an oracle α. For

example, θ might say that y is a witness to iWPHP. Note that it
only every requires |n|O(1) bits of α to make θ(n, y) true or false.

The Adversary claims to know an oracle α for which there is no
witness y < t such that θ(n, y) is true in α.

At each turn the Prover may ask the Adversary for the value of bit
of α; or he may forget a bit, to save memory. If so, the Adversary
can give the bit a different values next time it is asked.

Prover wins when his memory β makes θ(n, y) true for some y < t.

Theorem [Buss-Kraj́ıček]

If T 1
2 ` ∀n∃y< t θ(n, y), then there is a winning strategy for the

Prover in which he never needs to remember more than |n|O(1) bits.

18 / 25

The Prover-Adversary Game

Let ∃y< t θ(n, y) be a Σb
1 statement about an oracle α. For

example, θ might say that y is a witness to iWPHP. Note that it
only every requires |n|O(1) bits of α to make θ(n, y) true or false.

The Adversary claims to know an oracle α for which there is no
witness y < t such that θ(n, y) is true in α.

At each turn the Prover may ask the Adversary for the value of bit
of α; or he may forget a bit, to save memory. If so, the Adversary
can give the bit a different values next time it is asked.

Prover wins when his memory β makes θ(n, y) true for some y < t.

Theorem [Buss-Kraj́ıček]

If T 1
2 ` ∀n∃y< t θ(n, y), then there is a winning strategy for the

Prover in which he never needs to remember more than |n|O(1) bits.

18 / 25

The Prover-Adversary Game

Let ∃y< t θ(n, y) be a Σb
1 statement about an oracle α. For

example, θ might say that y is a witness to iWPHP. Note that it
only every requires |n|O(1) bits of α to make θ(n, y) true or false.

The Adversary claims to know an oracle α for which there is no
witness y < t such that θ(n, y) is true in α.

At each turn the Prover may ask the Adversary for the value of bit
of α; or he may forget a bit, to save memory. If so, the Adversary
can give the bit a different values next time it is asked.

Prover wins when his memory β makes θ(n, y) true for some y < t.

Theorem [Buss-Kraj́ıček]

If T 1
2 ` ∀n∃y< t θ(n, y), then there is a winning strategy for the

Prover in which he never needs to remember more than |n|O(1) bits.

18 / 25

The Prover-Adversary Game for iWPHP

The principle iWPHP is about an oracle α describing a function
mapping “pigeons” < 2n to “holes” < n.

So to show T 1
2 6` iWPHP it is enough to give a strategy for the

Adversary which works against a Prover who can remember facts
about only a very small number of pigeons.

But this is easy: the Adversary maintains a partial injection ρ of
pigeons to holes which extends the Prover’s current memory, and
doesn’t set any pigeons the Prover doesn’t know about.

Since the the size of dom(ρ) is always much smaller than n, when
the Prover asks about a new pigeon it is easy to find a hole to map
it to.

19 / 25

The Prover-Adversary Game for iWPHP

The principle iWPHP is about an oracle α describing a function
mapping “pigeons” < 2n to “holes” < n.

So to show T 1
2 6` iWPHP it is enough to give a strategy for the

Adversary which works against a Prover who can remember facts
about only a very small number of pigeons.

But this is easy: the Adversary maintains a partial injection ρ of
pigeons to holes which extends the Prover’s current memory, and
doesn’t set any pigeons the Prover doesn’t know about.

Since the the size of dom(ρ) is always much smaller than n, when
the Prover asks about a new pigeon it is easy to find a hole to map
it to.

19 / 25

The Prover-Adversary Game for iWPHP

The principle iWPHP is about an oracle α describing a function
mapping “pigeons” < 2n to “holes” < n.

So to show T 1
2 6` iWPHP it is enough to give a strategy for the

Adversary which works against a Prover who can remember facts
about only a very small number of pigeons.

But this is easy: the Adversary maintains a partial injection ρ of
pigeons to holes which extends the Prover’s current memory, and
doesn’t set any pigeons the Prover doesn’t know about.

Since the the size of dom(ρ) is always much smaller than n, when
the Prover asks about a new pigeon it is easy to find a hole to map
it to.

19 / 25

The Prover-Adversary Game for iWPHP

The principle iWPHP is about an oracle α describing a function
mapping “pigeons” < 2n to “holes” < n.

So to show T 1
2 6` iWPHP it is enough to give a strategy for the

Adversary which works against a Prover who can remember facts
about only a very small number of pigeons.

But this is easy: the Adversary maintains a partial injection ρ of
pigeons to holes which extends the Prover’s current memory, and
doesn’t set any pigeons the Prover doesn’t know about.

Since the the size of dom(ρ) is always much smaller than n, when
the Prover asks about a new pigeon it is easy to find a hole to map
it to.

19 / 25

Back to CPLS

We can use a similar argument to show T 1
2 6` CPLS.

CPLS has a similar size parameter n. We fix n.

In the Adversary strategy, instead of using partial injections ρ we
define a family H of legal restrictions ρ satisfying

• Each ρ ∈ H is a partially-defined oracle which does not
contain a witness to CPLS

• . . . some other nice properties.

We can find a winning strategy for the Adversary in which she
always maintains ρ ∈ H extending the Prover’s current memory.

20 / 25

Back to CPLS

We can use a similar argument to show T 1
2 6` CPLS.

CPLS has a similar size parameter n. We fix n.

In the Adversary strategy, instead of using partial injections ρ we
define a family H of legal restrictions ρ satisfying

• Each ρ ∈ H is a partially-defined oracle which does not
contain a witness to CPLS

• . . . some other nice properties.

We can find a winning strategy for the Adversary in which she
always maintains ρ ∈ H extending the Prover’s current memory.

20 / 25

Back to CPLS

We can use a similar argument to show T 1
2 6` CPLS.

CPLS has a similar size parameter n. We fix n.

In the Adversary strategy, instead of using partial injections ρ we
define a family H of legal restrictions ρ satisfying

• Each ρ ∈ H is a partially-defined oracle which does not
contain a witness to CPLS

• . . . some other nice properties.

We can find a winning strategy for the Adversary in which she
always maintains ρ ∈ H extending the Prover’s current memory.

20 / 25

Back to CPLS

We can use a similar argument to show T 1
2 6` CPLS.

CPLS has a similar size parameter n. We fix n.

In the Adversary strategy, instead of using partial injections ρ we
define a family H of legal restrictions ρ satisfying

• Each ρ ∈ H is a partially-defined oracle which does not
contain a witness to CPLS

• . . . some other nice properties.

We can find a winning strategy for the Adversary in which she
always maintains ρ ∈ H extending the Prover’s current memory.

20 / 25

Proof idea

We want to show T 1
2 + sWPHP(FPNP) 6` CPLS.

We know how to deal with T 1
2 . How about sWPHP?

Simplification. By some logical tricks, we can replace
sWPHP(FPNP) with a formula iWPHP(F , n) asserting

F is not an injection 2n→ n

for some F ∈ FPNP. (This is not quite true, but close.)

Goal now

Find a legal restriction ρ which “forces” iWPHP(F , n) to be true.
Then do the Prover-Adversary argument where the Adversary now
uses only legal restrictions extending ρ.

21 / 25

Proof idea

We want to show T 1
2 + sWPHP(FPNP) 6` CPLS.

We know how to deal with T 1
2 . How about sWPHP?

Simplification. By some logical tricks, we can replace
sWPHP(FPNP) with a formula iWPHP(F , n) asserting

F is not an injection 2n→ n

for some F ∈ FPNP. (This is not quite true, but close.)

Goal now

Find a legal restriction ρ which “forces” iWPHP(F , n) to be true.
Then do the Prover-Adversary argument where the Adversary now
uses only legal restrictions extending ρ.

21 / 25

Proof idea

We want to show T 1
2 + sWPHP(FPNP) 6` CPLS.

We know how to deal with T 1
2 . How about sWPHP?

Simplification. By some logical tricks, we can replace
sWPHP(FPNP) with a formula iWPHP(F , n) asserting

F is not an injection 2n→ n

for some F ∈ FPNP. (This is not quite true, but close.)

Goal now

Find a legal restriction ρ which “forces” iWPHP(F , n) to be true.
Then do the Prover-Adversary argument where the Adversary now
uses only legal restrictions extending ρ.

21 / 25

Key lemma 1

Definition

An NP query ∃z< t θ(z) is fixed by a legal restriction ρ if either

• θ(z) is defined and true in ρ for some z < t, or

• θ(z) is not defined and true in any legal σ ⊇ ρ, for any z < t.

We say it is fixed respectively to YES or NO.

[Pudlak-T] define a distribution R over legal restrictions
(for CPLS) satisfying the following.

Fixing Lemma

For any NP query Q, Prρ∈R[ρ does not fix Q] < n−1/7.

This is a weaker, but more widely applicable, version of Hastad’s
switching lemma for DNFs.

22 / 25

Key lemma 1

Definition

An NP query ∃z< t θ(z) is fixed by a legal restriction ρ if either

• θ(z) is defined and true in ρ for some z < t, or

• θ(z) is not defined and true in any legal σ ⊇ ρ, for any z < t.

We say it is fixed respectively to YES or NO.

[Pudlak-T] define a distribution R over legal restrictions
(for CPLS) satisfying the following.

Fixing Lemma

For any NP query Q, Prρ∈R[ρ does not fix Q] < n−1/7.

This is a weaker, but more widely applicable, version of Hastad’s
switching lemma for DNFs.

22 / 25

Key lemma 1

Definition

An NP query ∃z< t θ(z) is fixed by a legal restriction ρ if either

• θ(z) is defined and true in ρ for some z < t, or

• θ(z) is not defined and true in any legal σ ⊇ ρ, for any z < t.

We say it is fixed respectively to YES or NO.

[Pudlak-T] define a distribution R over legal restrictions
(for CPLS) satisfying the following.

Fixing Lemma

For any NP query Q, Prρ∈R[ρ does not fix Q] < n−1/7.

This is a weaker, but more widely applicable, version of Hastad’s
switching lemma for DNFs.

22 / 25

Key lemma 2

Recall that we are dealing with FPNP computations,

These run for |n|O(1) steps. At each step, they make an NP query
and get a YES/NO answer.

Definition

A computation w of such a machine is fixed by a legal restriction
ρ if every query in w is fixed by ρ (to the answer given in w).

In [Ko lodziejczyk-T] we extend the fixing lemma slightly to show,
for the same distribution R:

Fixing Lemma for Computations

For any such FPNP machine query M,

Prρ∈R[ρ does not fix some computation of M] < n−1/6.

23 / 25

Key lemma 2

Recall that we are dealing with FPNP computations,

These run for |n|O(1) steps. At each step, they make an NP query
and get a YES/NO answer.

Definition

A computation w of such a machine is fixed by a legal restriction
ρ if every query in w is fixed by ρ (to the answer given in w).

In [Ko lodziejczyk-T] we extend the fixing lemma slightly to show,
for the same distribution R:

Fixing Lemma for Computations

For any such FPNP machine query M,

Prρ∈R[ρ does not fix some computation of M] < n−1/6.

23 / 25

Key lemma 2

Recall that we are dealing with FPNP computations,

These run for |n|O(1) steps. At each step, they make an NP query
and get a YES/NO answer.

Definition

A computation w of such a machine is fixed by a legal restriction
ρ if every query in w is fixed by ρ (to the answer given in w).

In [Ko lodziejczyk-T] we extend the fixing lemma slightly to show,
for the same distribution R:

Fixing Lemma for Computations

For any such FPNP machine query M,

Prρ∈R[ρ does not fix some computation of M] < n−1/6.

23 / 25

Forcing a collision

Recall that we have a single function F : 2n→ n computed by a
machine M ∈ FPNP. We want to “force” iWPHP(F , n) to true.

Consider 2n copies of M, running on inputs x = 0, 1, . . . , 2n − 1.

By the fixing lemma for computations and an averaging argument,
if we take a random ρ ∈ R, then with high probability ρ fixes a
computation of M simultaneously for at least 2/3 of these inputs.

That is, as long as we only work with legal restrictions
extending ρ, there are x1, . . . , x4n/3 < 2n such that we can treat
each F (xi) as though it takes a fixed value yi < n.

By the standard pigeonhole principle, we can find xi 6= xj such that
yi = yj . This is our “forced” collision.

24 / 25

Forcing a collision

Recall that we have a single function F : 2n→ n computed by a
machine M ∈ FPNP. We want to “force” iWPHP(F , n) to true.

Consider 2n copies of M, running on inputs x = 0, 1, . . . , 2n − 1.

By the fixing lemma for computations and an averaging argument,
if we take a random ρ ∈ R, then with high probability ρ fixes a
computation of M simultaneously for at least 2/3 of these inputs.

That is, as long as we only work with legal restrictions
extending ρ, there are x1, . . . , x4n/3 < 2n such that we can treat
each F (xi) as though it takes a fixed value yi < n.

By the standard pigeonhole principle, we can find xi 6= xj such that
yi = yj . This is our “forced” collision.

24 / 25

Forcing a collision

Recall that we have a single function F : 2n→ n computed by a
machine M ∈ FPNP. We want to “force” iWPHP(F , n) to true.

Consider 2n copies of M, running on inputs x = 0, 1, . . . , 2n − 1.

By the fixing lemma for computations and an averaging argument,
if we take a random ρ ∈ R, then with high probability ρ fixes a
computation of M simultaneously for at least 2/3 of these inputs.

That is, as long as we only work with legal restrictions
extending ρ, there are x1, . . . , x4n/3 < 2n such that we can treat
each F (xi) as though it takes a fixed value yi < n.

By the standard pigeonhole principle, we can find xi 6= xj such that
yi = yj . This is our “forced” collision.

24 / 25

Proof summary

We want to show “T 1
2 + iWPHP(F , n) 6` CPLS”.

We use the Prover-Adversary game. We fix suitable n, xi , xj , y .

The Adversary claims to know an oracle α such that in α

• CPLS is false

• F (xi) = y and F (xj) = y .

These are both coNP claims. (In the second case, the coNP
assertion is that the NO replies in the computations are correct.)

By the definition of legal restrictions and the choice of ρ, the
Adversary has a strategy which sticks to legal restrictions
extending ρ and which guarantees that the Prover is never able to
witness that either claim is false.

It follows that there is no such proof.

25 / 25

Proof summary

We want to show “T 1
2 + iWPHP(F , n) 6` CPLS”.

We use the Prover-Adversary game. We fix suitable n, xi , xj , y .

The Adversary claims to know an oracle α such that in α

• CPLS is false

• F (xi) = y and F (xj) = y .

These are both coNP claims. (In the second case, the coNP
assertion is that the NO replies in the computations are correct.)

By the definition of legal restrictions and the choice of ρ, the
Adversary has a strategy which sticks to legal restrictions
extending ρ and which guarantees that the Prover is never able to
witness that either claim is false.

It follows that there is no such proof.

25 / 25

Proof summary

We want to show “T 1
2 + iWPHP(F , n) 6` CPLS”.

We use the Prover-Adversary game. We fix suitable n, xi , xj , y .

The Adversary claims to know an oracle α such that in α

• CPLS is false

• F (xi) = y and F (xj) = y .

These are both coNP claims. (In the second case, the coNP
assertion is that the NO replies in the computations are correct.)

By the definition of legal restrictions and the choice of ρ, the
Adversary has a strategy which sticks to legal restrictions
extending ρ and which guarantees that the Prover is never able to
witness that either claim is false.

It follows that there is no such proof.

25 / 25

Proof summary

We want to show “T 1
2 + iWPHP(F , n) 6` CPLS”.

We use the Prover-Adversary game. We fix suitable n, xi , xj , y .

The Adversary claims to know an oracle α such that in α

• CPLS is false

• F (xi) = y and F (xj) = y .

These are both coNP claims. (In the second case, the coNP
assertion is that the NO replies in the computations are correct.)

By the definition of legal restrictions and the choice of ρ, the
Adversary has a strategy which sticks to legal restrictions
extending ρ and which guarantees that the Prover is never able to
witness that either claim is false.

It follows that there is no such proof.
25 / 25

