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Quantified Boolean Formulas (QBF)

What’s different in QBF from propositional proof complexity?

• Quantification!

• Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

• driven by QBF solving

• shows different effects from propositional proof complexity

• connects to circuit complexity, bounded arithmetic, . . .
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QBF proof complexity vs solving

Impact for proof complexity

different resolution systems defined that capture ideas in solving:

• CDCL

• expansion of universal variables

• dependency schemes

Impact for solving

• proves soundness of new algorithmic approaches

• upper/lower bounds suggest new directions in solving
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Interesting test case for algorithmic progress

SAT revolution

SAT NP main breakthrough late 90s
QBF PSPACE reaching industrial applicability now
DQBF NEXPTIME very early stage
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QBF resolution systems

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving
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A core system: QU-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95, V. Gelder 12]

Rules

• Resolution: x ∨ C ¬x ∨ D (C ∨ D is not tautological.)
C ∨ D

• ∀-Reduction: C ∨ u (u universally quantified)
C

C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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Further systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Q-resolution (Q-Res)

• pivots in resolution rule must be existential

• otherwise same rules as QU-Res

• first QBF resolution system [Kleine Büning et al. 95]
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Expansion based calculi

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

∀Exp+Res

• expands universal variables (for one or both values 0/1)

• introduced by [Janota & Marques-Silva 13]
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∀Exp+Res

Annotated literals
couple together existential and universal literals: lα, where

• l is an existential literal.

• α is a partial assignment to universal literals.

Rules of ∀Exp+Res

C in matrix (Axiom){
l [τ ] | l ∈ C , l is existential

}
- τ is a complete assignment to universal variables

that falsifies all universal literal in C .

- [τ ] restricts τ to variables left of l in the prefix.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2
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Example proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e
0/u
2 ¬e1 ∨ e

1/u
2

0/u 1/u

¬e2

¬e0/u
2 ¬e1/u

2

0/u 1/u

e
0/u
2 ∨ e

1/u
2

e
1/u
2

⊥
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Further expansion-based systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

IR-calc

• Instantiation + Resolution

• ‘delayed’ expansion

• introduced by [B., Chew, Janota 14]
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CDCL vs expansion systems

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

• Q-Res and ∀Exp+Res are incomparable.

• But tree ∀Exp+Res simulates tree Q-Res (and is stronger).
[Janota & Marques-Silva 15]

• ∀Exp+Res even simulates Q-Res on QBFs of bounded
quantifier complexity. [B., Chew, Clymo, Mahajan 19]
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CDCL vs expansion systems

Q-Res and ∀Exp+Res are incomparable

1. construct formulas that are easy in Q-Res, but require
exponentially many expansions of universal variables
[Janota & Marques-Silva 15]

2. construct Parity formulas hard in Q-Res, but easy in
∀Exp+Res

· uses the concept of strategy extraction
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Strategy extraction

Game semantics of QBF

• ∃ and ∀ assign variables in order of the prefix.

• ∀ wins if a clause falsifies, otherwise ∃ wins.

• ∀ has a winning strategy iff the QBF is false.

Strategy extraction

• in QBF solving: return true/false + a strategy for ∃/∀,
witnessing the answer.

• for QBF calculi: given a refutation of a false QBF,
compute a winning strategy for ∀
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Strategy extraction for QBF calculi

∀ winning strategies can be efficiently extracted

• in polynomial time for all QBF resolution systems

• in AC0 for QU-Res and Q-Res

Lower bound idea

• Construct false QBFs without easily computable winning
strategies

• These formulas must have large proofs.
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Hard formulas for QU-Res
• Let φn be a propositional formula computing x1 ⊕ . . .⊕ xn.
• Consider the QBF ∃x1, . . . , xn∀z . (z ∨ φn) ∧ (¬z ∨ ¬φn).
• The matrix of this QBF states that z is equivalent to the

opposite value of x1 ⊕ . . .⊕ xn.
• The unique strategy for the universal player is therefore to

play z equal to x1 ⊕ . . .⊕ xn.

Defining φn

• Let xor(o1, o2, o) be the set of clauses
{¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}.
• Define

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}
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The exponential lower bound

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}

Theorem (B., Chew & Janota 15)

QParityn require exponential-size QU-Res refutations.

Proof idea

• By [Balabanov & Jiang 12] we extract strategies from any
Q-Res proof as bounded-depth circuits in polynomial time.

• But Parity(x1, . . . xn) requires exponential-size
bounded-depth circuits [Håstad 87].

• Therefore QU-Res proofs must be of exponential size.
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Beyond QBF Resolution

So far we looked at QBF Resolution systems

• What about Cutting Planes, Polynomial Calculus, Frege etc.?

• Can we find stronger calculi that still have strategy extraction?
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (x̄ , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (x̄ , u)

F (x̄ , 0)

F (x̄ , u)

F (x̄ , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system Q-P by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 16)

Q-P is sound and complete for QBF.
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Important propositional proof systems

Truth table

Tree-Resolution

Resolution

Cutting PlanesAC0-Frege

Nullstellensatz

Polynomial Calculus

PCR

Frege

Extended Frege

optimal proof system?

not polynomially bounded
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Do we get strategy extraction?

QBF systems with efficient strategy extraction

• all QBF Resolution systems

• Cutting planes (Q-CP)

• Polynomial calculus (Q-PC)

• Q-Frege, Q-EF

General proof checking format

• QRAT [Heule, Seidl, Biere 14]

Stronger systems without strategy extraction

• sequent systems G0, G1, . . . [Kraj́ıček & Pudlák 90, . . .]

• formulas not necessarily prenex
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Which lower bound techniques apply?

Techniques for propositional proof systems

• size-width relation [Ben-Sasson & Wigderson 01]

• feasible interpolation [Kraj́ıček 97]

• game-theoretic techniques [Pudlák, Buss, Impagliazzo,. . .]

• proof complexity generators [Kraj́ıček, Alekhnovich et al.]

In QBF proof systems

• size-width relations fail for QBF resolution systems
[B., Chew, Mahajan, Shukla 16]

• feasible interpolation holds for QBF resolution systems
[B., Chew, Mahajan, Shukla 17]

• game-theoretic techniques work for weak tree-like systems
[B., Chew, Sreenivasaiah 19] [Chen 16]
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Genuine QBF lower bounds

Propositional hardness transfers to QBF

• If φn(~x) is hard for P, then ∃~x φn(~x) is hard for Q-P .

• propositional hardness: not the phenomenon we want to study.

Genuine QBF hardness

• in Q-P : just count the number of ∀red steps

• can be modelled precisely by allowing NP oracles in QBF
proofs [Chen 16; B., Hinde & Pich 17]
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QBF systems with only genuine lower bounds

A relaxation of a quantifier prefix

• can turn ∀ into ∃
• move ∀ to the left

The QBF system Q-P Σp
k has the rules:

• of the propositional system P

• ∀-reduction

• C1 . . . Cl

D
for any l ,

where the quantifier prefix Π is relaxed to a Σb
k -prefix Π′

such that Π′.
∧l

i=1 Ci |= Π′.D ∧
∧l

i=1 Ci
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Genuine hardness results

Theorem [B., Hinde, Pich 17]

• For every odd k there exist QBFs that are easy in Q-Res Σp
k ,

but require exponential-size proofs in Q-Res Σp
k−1 .

• There exist QBFs that require exponential-size proofs in
Q-Res Σp

k for all k.

Theorem [B., Blinkhorn, Hinde 18]

Random QBFs (in a suitable random model) require
exponential-size proofs in Q-Res NP, Q-CP NP and Q-PC NP.

Theorem [B., Bonacina, Chew 16]

There exist QBFs that require exponential-size proofs in
Q-AC0[p]-Frege NP.
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Characterisations

Theorem [B. & Pich 16]

• super-polynomial lower bounds for Q-Frege NP iff
PSPACE 6⊆ NC1

• super-polynomial lower bounds for Q-EF NP iff
PSPACE 6⊆ P/poly
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A new lower bound technique

Semantic lower bound technique for QBF

• applies to all QBF systems of the form Q-P

• measures the complexity of strategies
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Response map
A response map R for a proof system Q-P is a function

R : (L, α) 7→ β where

• L is a line in Q-P

• α is a total assignment to the existential variables of L

• β is a total assignment to the universal variables in L

such that if L|α is not a tautology, then L|α∪β is false.

Example: Resolution

• lines are clauses, e.g. L = x1 ∨ ¬x2︸ ︷︷ ︸
existential

∨ u1 ∨ u2︸ ︷︷ ︸
universal

• map (L, α) to (u1/0, u2/0).

• Response is independent of α.
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Strategy extraction algorithm

Round-based strategy extraction

• Fix a response map R for Q-P .

• Let π a Q-P refutation for Φ = ∃E1∀U1 · · · ∃En∀Un φ.

• ∃ player chooses an assignment α1 for E1.

• ∀ player searches for the first line L in π which only contains
variables from E1 ∪ U1 and is not a tautology under α1.

• ∀ responds by R(L, α1).

• iteratively continue with E2, U2 . . .
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The cost of strategies

Definition

• Fix a winning strategy S for a QBF Φ and consider the size of
its range (in each universal block).

• The cost of Φ is the minimum of this range size over all
winning strategies.

Intuition
Strategies that require many responses of the universal player (in
one block) are costly.
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Example

Equality formulas

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn(
n∧

i=1

(xi ∨ ui ∨ ¬ti ) ∧ (¬xi ∨ ¬ui ∨ ¬ti )

)
∧

(
n∨

i=1

ti

)
.

• The only winning strategy for these formulas is ui = xi for
i = 1, . . . , n.

• The cost (=size of the range of the winning strategy) is 2n.
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Capacity

Capacity of lines and proofs

• Let L be a line in Q-P .

• The capacity of a line L is the size of the minimal range of
R(L, .) over all response maps R for Q-P .

• The capacity of a Q-P proof is the maximum of the capacity
of its lines.

Example

• Clauses have capacity 1 (require only one response).

• Resolution proofs have always capacity 1.
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The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each Q-P NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Example: Equality formulas in resolution

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn
[
∧n

i=1(xi ∨ ui ∨ ¬ti ) ∧ (¬xi ∨ ¬ui ∨ ¬ti )] ∧
∨n

i=1 ti
• cost = 2n

• capacity = 1

• ⇒ proofs in Q-Res are of size 2n.
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The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each Q-P NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Intuition on the proof

• cost counts the number of necessary responses of universal
winning strategies

• these can be extracted from the proof (by the round-based
strategy extraction algorithm)

• capacity gives an upper bound on how many responses can be
extracted per line
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The central connection

The Size-Cost-Capacity Theorem [B., Blinkhorn, Hinde 18]

For each Q-P NP proof π of a QBF φ we have

|π| ≥ cost(φ)

capacity(π)
.

Remarks

• lower bound technique with semantic flavour

• works for all base systems P (under very mild assumptions)

• always produces ‘genuine’ QBF lower bounds on the number
of ∀-reduction steps
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In other QBF systems

Cutting planes

• capacity of lines is still 1

• the best response for a line

a1x1 + . . . amxm︸ ︷︷ ︸
existential

+ b1u1 + . . . bnun︸ ︷︷ ︸
universal

≥ C

is to play ui = 0 if bi > 0 and 1 otherwise

Corollaries

• For each Q-CP proof π of a QBF φ we have |π| ≥ cost(φ).

• Equality formulas require Q-CP proofs of size 2n.
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Polynomial Calculus (with Resolution)

Capacity is non-constant

• consider x(1− u) + (1− x)u = 0

• winning strategy is u = 1− x .

• requires 2 responses, hence capacity of the line is 2.

Lemma
If π is a Q-PC proof where each line contains at most M
monomials, then capacity(π) ≤ M.

Corollary

For each Q-PC proof π of a QBF φ we have |π| ≥
√
cost(φ).
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Frege

Capacity can be exponential

• Consider
∨n

i=1 [(xi ∨ ui ) ∧ (¬xi ∨ ¬ui )].

• The unique winning response is to play ui = xi for all i ∈ [n].

• Capacity of this line is 2n.

Proposition

Equality formulas are easy in Q-Frege .
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Application: Hard random formulas in QBF

Random QBFs

• Pick clauses C 1
i , . . . ,C

cn
i uniformly at random

• for each C j
i choose 1 literal from the set Xi = {x1

i , . . . , x
m
i }

and 2 literals from Yi = {y1
i , . . . , y

n
i }.

• Define Q(n,m, c) as

∃Y1 . . .Yn∀X1 . . .Xn∃t1 . . . tn.
n∧

i=1

cn∧
j=1

(
¬ti ∨ C j

i

)
∧

n∨
i=1

ti

Remarks

• All clauses contain existential and universal literals.

• Rightmost quantifier block is existential.
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Hardness of the random QBFs

Q(n,m, c) = ∃Y1 . . .Yn∀X1 . . .Xn∃t1 . . . tn.
n∧

i=1

cn∧
j=1

(
¬ti ∨ C j

i

)
∧

n∨
i=1

ti

Theorem [B., Blinkhorn, Hinde 18]

Let 1 < c < 2 and m ≤ (1− ε) log2(n) for some ε > 0.
With high probability, Q(n,m, c) is false and requires size 2Ω(nε)

in QU-Resolution, Q-CP , and Q-PCR .

Proof idea
Q(n,m, c) is false iff all QBFs Ψi = ∃Yi∀Xi

∧cn
j=1 C

j
i are false.

1. Show that Ψi is false whp.

2. Show that Ψi requires non-constant winning strategies whp.
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Conclusion

• QBF vs propositional proof complexity: different picture

• New semantic QBF technique, based on strategy extraction

• Yields genuine QBF lower bounds

Challenges in QBF proof complexity

• Characterise reasons for hardness in QBF Resolution

• Find more hard QBF families

• Understand randomness in QBF

• Model precisely QBF solving and guide developments
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