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Plato and his -ism

Plato is well-known in (foundations of) mathematics for his
name-sake philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities,

independent of the physical world and the symbols that represent them.

Plato’s allegory of the cave provides a powerful visual:

We can only know reflections/shadows/... of ideal objects.
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Gödel hierarchy
strong
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...
large cardinals
...
ZFC
ZC (Zermelo set theory)

simple type theory

medium



Z2 (second-order arithmetic)
...
Π1

2-CA0 (comprehension for Π1
2-formulas)

Π1
1-CA0 (comprehension for Π1

1-formulas)
ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak


WKL0 (weak König’s lemma)
RCA0 (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

It is striking that a great many foundational theories are linearly ordered by
[consistency strength] <. Of course it is possible to construct pairs of artificial
theories which are incomparable under <. However, this is not the case for the
“natural” or non-artificial theories which are usually regarded as significant in the
foundations of mathematics.
(Simpson, Gödel Centennial Volume; also: Koellner, Burgess, Friedman,. . . )

Zermelo-Fraenkel set theory with choice
aka ‘the’ foundation of mathematics

Hilbert-Bernays’s Grundlagen
der Mathematik

Russell-Weyl-Feferman
predicative mathematics

The ‘Big Five’ of Reverse Mathematics


Hilbert’s finitary math

Received view: natural/important systems form linear Gödel hierarchy

and 80/90% of ordinary mathematics is provable in ACA0/Π1
1-CA0.
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and 80/90% of ordinary mathematics is provable in ACA0/Π1
1-CA0.
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ECF replaces uncountable objects by countable representations/RM-codes

←−ECF

ECF converts right-hand side to left-hand side, including equivalences!
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Introduction Compactness Nets

Cousin’s lemma and HBU

Ordinary mathematics = prior to or independent of abstract set theory

Weierstrass (1880) and Pincherle (1882) used compactness, but did
not explicitly formulate it. Cousin (1893) proves Cousin’s lemma.

Cousin’s lemma expresses open-cover compactness of I ≡ [0, 1] as
follows: Any Ψ : I → R+ yields a ‘canonical’ cover ∪x∈I IΨ

x of I , where
IΨ
x ≡ (x −Ψ(x), x + Ψ(x)). Hence, we have:

(∀Ψ : I → R+)(∃y1, . . . , yk ∈ [0, 1])([0, 1] ⊂ ∪i≤k IΨ
yi ) (HBU)

The reals y1, . . . , yk yield a finite sub-cover; NO conditions on Ψ.

PS: Borel’s proof of HBU (≈ 1900) makes no use of the axiom of choice.

With minimal adaption, Borel’s proof yields a realiser for HBU.
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Introduction Compactness Nets

Beyond Riemann and Lebesgue: the gauge integral

The gauge integral was introduced in 1912 by Denjoy (in a different

form) and generalises Lebesgue’s integral (1904).

The development: Denjoy-Luzin-Perron-Henstock-Kurzweil∗

The first step in gauge integration is always Cousin’s lemma!
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The gauge integral: Riemann’s cousin!

Definition (Riemann integral)

f : R→ R is Riemann integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ > 0︸ ︷︷ ︸
constant

)(∀P)((∀i ≤ k)(|xi − xi+1| < δ)︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )− A| < ε)

P = (0, t1, x1 . . . xk , tk , 1) partition S(P, f ) =
∑

i f (ti )|xi+1 − xi | Riemann sum

Definition (Gauge integral)

f : R→ R is gauge integrable on I ≡ [0, 1] with integral A ∈ R:

(∀ε > 0)(∃ δ : I → R+︸ ︷︷ ︸
‘gauge’ function

)(∀P)((∀i ≤ k)(|xi − xi+1| < δ(ti ))︸ ︷︷ ︸
P is ‘finer’ than δ

→ |S(P, f )−A| < ε)

If the gauge δ : I → R+ is continuous, then f is Riemann integrable.

A function is f Lebesgue integrable IFF f and |f | are gauge integrable.
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The ‘ultimate’ integral

Theorem (Hake)

For ANY f , if either side exists, then both exist and lima→b−
∫ c

a
f =

∫ c

b
f .

Theorem (FTC)

For ANY differentiable f ,
∫ b

a
f ′ = f (b)− f (a).

Proof.

Any modulus of differentiability for f is also a gauge for
∫
f ′.

Descriptive set theory studies these. . . restricted to measurable functions.

The gauge integral provides a unique formalism: close to Feynman’s

intuitive path integral and avoids non-physical imaginary time.

A strong version of FTC is equivalent to HBU over RCAω
0 .
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↔ Dini’s theorem for nets.

↔ uncountable Heine-Borel
compactness

↔ gauge integral thms

↔ range of Y : NN → N exists

↔ Mon. conv. thm for nets

↔ Ascoli-Arzela for nets

↔. . .

↔ . . .

ECF replaces uncountable objects by countable representations/RM-codes

←−ECF

ECF converts right-hand side to left-hand side, including equivalences!
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Introduction Compactness Nets

Nets: Moore-Smith-Vietoris

Nets generalise the concept of sequence to any topological space.

Definition (Nets, ca. 1915)

A set D 6= ∅ with a binary relation ‘�’ is directed if

a The relation � is transitive and reflexive.

b For d , e ∈ D, there is f ∈ D such that d � f ∧ e � f .

For such (D,�) and topological space X , any x : D → X is a net.

Sequences are nets for (D,�) = (N,≤). We write xd for x(d).
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Introduction Compactness Nets

Definitions

Definition (Convergence of nets)

A net xd converges to the limit y = limd xd if for any neigh-
bourhood U of y , there is d0 ∈ D such that for all e � d0, xe ∈ U.

If the topological space X has some order ≤X :

Definition (Increasing nets)

A net xd : D → X is increasing if d � e → xd ≤X xe for d , e ∈ D.

Most notions of convergence carry over to nets mutatis mutandis.

We (only) study nets with D ⊆ NN and �D ⊆ D × D.

In this way, our nets are third-order objects with extra structure
(D,�) on the domain. (‘filter-based’ theory is fourth-order)
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Introduction Compactness Nets

Monotone convergence

The central object of study in domain theory is the directed
complete partial order (dcpo).

Any increasing net converges to its supremum in a dcpo. In this
light, let us study the most basic version of monotone convergence:

Definition (MCTnet)

For D ⊆ NN, an increasing net xd : D → [0, 1] converges.

MCTnet is equivalent to BOOT, as follows.

(∀Y : NN → N)(∃X ⊂ N)(∀n ∈ N)
[
n ∈ X ↔ (∃f : N→ N)(Y (f , n) = 0)

]
.

Many theorems for nets imply (are equivalent to) BOOT:
Ascoli-Arzela, anti-Specker, Bolzano-Weierstrass, Cauchy nets, . . .

Adding a modulus of convergence to MCTnet yields equivalence to
BOOT + QF-AC0,1. Non-uniqueness and ECF!
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HBU, BOOT, etc are provable in Hilbert-Bernays’ Grundlagen der Mathematik
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Introduction Compactness Nets

Vade retro

A recursive counterexample to a theorem shows that this theorem
is false when restricted to recursive sets.

For instance, a Specker sequence is recursive, monotone, and
bounded, but does not converge to any recursive real.

Recursive counterexamples are often ‘recycled’ for proving reversals
in Reverse Mathematics.

Many such results generalise (with some care) by simply replacing
functions by higher-type functionals (and sequences by nets).

Specker nets, fields and rings over NN, . . .
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Conclusion

The current foundations of ordinary mathematics, including
Reverse Mathematics and the Gödel hierarchy are only a reflection
of a higher(-order) truth, called the Plato hierarchy.

Nets play a big role in this generalisation!

Brouwer-ish nature of the Plato hiearchy: the existence of
discontinuous functions on R is to be avoided, as ECF converts
this to 0=1.

One can readily ‘lift’ second-order results to third-order ones, esp.
reversals and recursive counterexamples.

The previous also works for all finite types. E.g. monotone
convergence for nets indexed by NN → N, is at the level of Π1

2-CA0.
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Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

We thank LMU Munich, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?
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