About Rogers semilattices of finite families in Ershov hierarchy

Sergey Ospichev
Joint work with Nikolay Bazhenov and Manat Mustafa
Prague, 2019
Let S be countable set. Any surjective map from ω onto S we will call a *numbering*.

Goncharov-Sorbi approach:

Numbering η is called Γ-computable, if set $\{< x, y > | y \in \eta_x \} \in \Gamma$
$Com_\Gamma(S)$ – family of all Γ-computable numberings of S.

$\mu \leq \nu$ if there is computable function f and $\mu(x) = \nu(f(x))$.

$\langle Com_\Gamma(S)/\equiv, \leq \rangle$ – Rogers semilattice $R_\Gamma(S)$.

Any member of a greatest element of $R_\Gamma(S)$ we will call a principal Γ-computable numbering.
A is Σ_n^{-1}-set, if $A(x) = \lim_{s} A(x, s)$, $A(x, 0) = 0$ and $|\{s|A(x, s) \neq A(x, s + 1)\}| \leq n$
Let \mathcal{O} be Kleene ordinal notation system, $A \subseteq \omega$ and a is notation for ordinal α in \mathcal{O}.

For all $a \in \mathcal{O}$ set A is Σ_{a}^{-1}-set if there exist total computable function $f(x, s)$ and partial computable function $g(x, s)$ and for all $x \in \omega$:

1. $A(x) = \lim_{s} f(x, s)$, $f(x, 0) = 0$;
2. $g(x, s) \downarrow \rightarrow g(x, s + 1) \downarrow \leq_{o} g(x, s) <_{o} a$;
3. $f(x, s) \neq f(x, s + 1) \rightarrow g(x, s + 1) \downarrow \neq g(x, s)$.
Theorem (Herbert, Jain, Lempp, Mustafa, Stephan)
There is an operator \mathcal{E} that for any Σ^{-1}_n-computable family S, $\mathcal{E}(S)$ is Σ^{-1}_{n+1}-computable family, and $\mathcal{R}^{-1}_n(S)$ is isomorphic to $\mathcal{R}^{-1}_{n+1}(\mathcal{E}(S))$
Theorem (Lachlan)
Any finite family of c.e. sets has a computable principal numbering.

Theorem (Badaev, Goncharov, Sorbi)
Let S be any finite Σ^0_{n+2}-computable family of sets. S has a Σ^0_{n+2}-computable principal numbering if and only if there is least set under inclusion in S.
Theorem (Abeshev)

There is a family $S = \{A, B\}$ of disjoint Σ_2^{-1}-sets without Σ_2^{-1}-computable principal numbering.
Proposition
For any ordinal notation $\alpha > \omega 2$, any finite family of effective disjoint Σ_2^{-1}-sets has a Σ_α^{-1}-computable principal numbering.

Here sets are effective disjoint, when sets $\{x|\exists s f(x, s) = 1\}$ are disjoint.
Theorem (Bazhenov, Mustafa, O.)

For any ordinal notation α of a non-zero ordinal, any family $S = \{A, B\}$ of c.e. sets has a Σ^{-1}_α-computable principal numbering.
Proposition (Bazhenov, Mustafa, O.)
Let $S = \{A, B\}$ be a family of c.e. sets with $A \subset B$, $B \setminus A$ is not c.e. Then any Σ_{2n+2}-computable numbering of S is equivalent to some Σ_{2n+1}-computable numbering of S.

The same goes for family $\{\emptyset, B \setminus A\}$ and the levels $2n$ and $2n + 1$.
Lemma (Lachlan)
Family S of c.e. sets has a computable principal numbering if and only if $S \setminus \{\emptyset\}$ has one too.
Let $\mathcal{P} = \langle P, \leq_P \rangle$ be a finite partially ordered set. Let

$\tilde{p} = \{ x | p \leq_P x \}$. We will call a family $\{ F_p \}_{p \in \mathcal{P}}$ of nonempty Σ_a^{-1}-sets acceptable if $F_{p_1} \cap F_{p_2} = \bigcup_{q \in \tilde{p}_1 \cap \tilde{p}_2} F_q$ for any $p_1, p_2 \in \mathcal{P}$.

Theorem (Bazhenov, Mustafa, O.)

Let a be the ordinal notation of nonzero ordinal. For any finite partially ordered set \mathcal{P} and any acceptable family $\{ F_p \}_{p \in \mathcal{P}}$, there is Σ_a^{-1}-computable principal numbering of family $\{ F_p \}_{p \in \mathcal{P}} \cup \{ \emptyset \}$.
Corollary
Let S be a finite family of disjoint Σ_a^{-1}-sets, there is Σ_a^{-1}-computable principal numbering of family $S \cup \{\emptyset\}$

Corollary
Let $S = \{\emptyset \subset A_1 \subset \cdots \subset A_n\}$ be a finite family of Σ_a^{-1}-sets, then there is Σ_a^{-1}-computable principal numbering of S
Thanks for your attention!