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Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections and unions
of size ≤ κ and complementation.

Dorottya Sziráki Perfect Sets and Games on Generalized Baire Spaces



Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections and unions
of size ≤ κ and complementation.

Dorottya Sziráki Perfect Sets and Games on Generalized Baire Spaces



Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections and unions
of size ≤ κ and complementation.

Dorottya Sziráki Perfect Sets and Games on Generalized Baire Spaces



Perfect and scattered subsets of the κ-Baire space

Definition (Väänänen, 1991)

Let X ⊆ κκ, let x0 ∈ κκ and let ω ≤ γ ≤ κ. The game Vγ(X,x0) has
length γ and is played as follows:

I U1 . . . Uα . . .

II x0 x1 . . . xα . . .

II first plays x0. In each round 0 < α < γ, I plays a basic open subset
Uα of X, and then II chooses

xα ∈ Uα with xα 6= xβ for all β < α.

I has to play so that Uβ+1 3 xβ in each successor round β + 1 < γ and
Uα =

⋂
β<α Uβ in each limit round α < γ.

II wins a given run of the game if she can play legally in all rounds α < γ.
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Perfect and scattered subsets of the κ-Baire space

Let X ⊆ κκ, and suppose ω ≤ γ ≤ κ.

Definition (Väänänen, 1991)

X is a γ-scattered set if I wins Vγ(X,x0) for all x0 ∈ X.

X is a γ-perfect set if X is closed and II wins Vγ(X,x0) for all x0 ∈ X.

X is ω-perfect iff X is perfect in the usual sense (i.e., iff X closed
and has no isolated points).
X is ω-scattered iff X is scattered in the usual sense (i.e., each
nonempty subspace contains an isolated point).
Vγ(X,x0) may not be determined when γ > ω.
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A different definition of κ-perfectness

A subset of κκ is closed iff it is the set of branches

[T ] = {x ∈ κκ : x�α ∈ T for all α < κ}

of a subtree T of <κκ.

Definition
A subtree T of <κκ is a strongly κ-perfect tree if T is <κ-closed and every
node of T extends to a splitting node.

A set X ⊆ κκ is a strongly κ-perfect set if X = [T ] for a strongly
κ-perfect tree T .

Example (Huuskonen)

The following set is κ-perfect but is not strongly κ-perfect:

Yω = {x ∈ κ3 : |{α < κ : x(α) = 2}| < ω}.

Proposition
Let X be a closed subset of κκ.

X is κ-perfect ⇐⇒ X =
⋃
i∈I

Xi for strongly κ-perfect sets Xi.
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Perfect and scattered trees

Definition (Galgon, 2016)

Let T be a subtree of <κ2, let t ∈ T , and let ω ≤ γ ≤ κ. The game
Gγ(T, t) has length γ and is played as follows:

I δ0 i0 . . . δα iα . . .

II t0 . . . tα . . .

In each round α < γ, player I first plays δα < κ. Then II plays a node
tα ∈ T of height ≥ δα, and I chooses iα < 2. II has to play so that
t ⊆ t0, and

tβ
_〈iβ〉 ⊆ tα for all β < α < γ.

II wins a given run of the game if she can play legally in all rounds α < γ.

T is a γ-scattered tree if I wins Gγ(T, t) for all t ∈ T .
T is a γ-perfect tree if II wins Gγ(T, t) for all t ∈ T .
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Perfect and scattered trees

Proposition

Let T be a subtree of <κκ.

1 T is a κ-perfect tree ⇐⇒ [T ] is a κ-perfect set.

2 If the κ-perfect set property holds for closed subsets of κκ (i.e., every
closed subset of size > κ has a κ-perfect subset), then

T is a κ-scattered tree ⇐⇒ [T ] is a κ-scattered set.

Remark: The κ-PSP for closed subsets of κκ is equiconsistent with the
existence of an inaccessible cardinal λ > κ.
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γ-perfect sets and trees when γ ≤ κ

Theorem (Sz)

Let T be a subtree of <κκ and let ω ≤ γ ≤ κ.
1 If [T ] is a γ-perfect set, then T is a γ-perfect tree.

2 If T is a γ-scattered tree, then [T ] is a γ-scattered set.

3 If κ is weakly compact and T ⊆ <κ2, then

T is a γ-perfect tree ⇐⇒ [T ] is a γ-perfect set.

More generally: this holds if κ has the tree property and T is a κ-tree.

Question
Is it consistent that 3 holds for “scattered” instead of “perfect”?
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Theorem (Sz)

An analogue of the previous theorem holds for the levels of the
“generalized Cantor-Bendixson hierarchies” associated to subsets of κκ and
to subtrees of <κκ.

See the next 3 slides for definitions and a precise statement this theorem.

Generalized Cantor-Bendixson hierarchies can be defined for subsets of κκ
and for subtrees of <κκ, using modifications of Väänänen’s and Galgon’s
games.

For subtrees of <κκ, modifications of a game equivalent to Gγ(T, t) need to
be used.
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Generalizing the Cantor-Bendixson hierarchy

Definition (Hyttinen; Väänänen)

Let X ⊆ κκ, let x0 ∈ κκ, and let S be a tree without branches of length ≥ κ.
The S-approximation VS(X,x0) of Vκ(X,x0) is the following game.

I s1, U1 . . . sα, Uα . . .

II x0 x1 . . . xα . . .

In each round α > 0, I first plays sα ∈ S such that sα >S sβ for all 0 < β < α.
Then I plays Uα and II plays xα according to the same rules as in Vκ(X,x0).
The first player who can not move loses, and the other player wins.

Let
ScS(X) = {x ∈ X : I wins VS(X,x)};

KerS(X) = {x ∈ κκ : II wins VS(X,x)}.

The sets X ∩ KerS(X) (resp. X − ScS(X)) can be seen as the “levels of a
generalized Cantor-Bendixson hierarchy” for the set X associated to II (resp. I).1

1

For a precise verison of this statement, see: J. Väänänen. A Cantor-Bendixson theorem for
the space ω1

ω1 . Fund. Math. 137:187–199, 1991.
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Generalizing the Cantor-Bendixson hierarchy

Proposition (Sz.)

There exists a family

{G′κ(T, t) : T is a subtree of <κκ, t ∈ T and ω ≤ γ ≤ κ}

of games such that the following hold for all T , t and γ.

The games G′γ(T, t) and Gγ(T, t) are equivalent whenever T ⊆ <κ2.

Given a tree S without branches of length ≥ κ, let G′S(T, t) denote the
S-approximation of G′κ(T, t) (this is defined analogously to the
S-approximations VS(T, x)). Let

ScS(T ) = {t ∈ T : I wins G′S(T, t)};
KerS(T ) = {t ∈ T : II wins G′S(T, t)}.

Then KerS(T ) (resp. T − ScS(T )) generalize the levels of the Cantor-
Bendixson hierarchy for T which was defined by Galgon, for II (resp. I).2

2 In the same sense that X ∩KerS(X) (resp. X − ScS(X)) generalize the levels of the
Cantor-Bendixson hierarchy for X, for II (resp. I).
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Theorem (Sz; precise version of previous theorem)

Let T be a subtree of <κκ; let S be a tree without branches of length ≥ κ.

1 KerS([T ]) ⊆ [KerS(T )].

2 [T ]− ScS([T ]) ⊆ [T − ScS(T )].

3 If κ has the tree property and T is a κ-tree, then

KerS([T ]) = [KerS(T )].
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Väänänen’s generalized Cantor-Bendixson theorem

Theorem (Väänänen, 1991)

The following Cantor-Bendixson theorem for κκ is consistent relative to
the existence of a measurable cardinal λ > κ:

Every closed subset of κκ is the (disjoint) union of

a κ-perfect set and a κ-scattered set, which is of size ≤ κ.

Theorem (Galgon, 2016)

Väänänen’s generalized Cantor-Bendixson theorem is consistent relative to
the existence of an inaccessible cardinal λ > κ.
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Väänänen’s generalized Cantor-Bendixson theorem

Proposition (Sz)

Väänänen’s generalized Cantor-Bendixson theorem is equivalent to the
κ-perfect set property for closed subsets of κκ (i.e, the statement that
every closed subset of κκ of size > κ has a κ-perfect subset).

Remark: The κ-PSP for closed subsets of κκ is equiconsistent with the
existence of an inaccessible cardinal λ > κ.

Proof (idea).

Let X be a closed subset of κκ. Its set of κ-condensation points is defined to be

CPκ(X) = {x ∈ X : |X ∩Nx�α| > κ for all α < κ}.

If the κ-PSP holds for closed subsets of κκ, then CPκ(X) is a κ-perfect set and
X − CPκ(X) is a κ-scattered set of size ≤ κ.
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Thank you!
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