Pseudocompact unitary representations of finitely generated groups

Aleksander Ivanov

Institute of Mathematics
Silesian University of Technology

August 16, 2019
Hilbert spaces over \mathbb{R}

We identify a **Hilbert space** over \mathbb{R} with a many-sorted metric structure

$$\left(\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, \{\lambda_r\}_{r \in \mathbb{R}}, +, -, \langle \rangle \right),$$

where

- B_n is the ball of elements of norm $\leq n$,
- $I_{mn} : B_m \to B_n$ is the inclusion map,
- $\lambda_r : B_m \to B_{km}$ is scalar multiplication by r, with k the unique integer satisfying $k \geq 1$ and $k - 1 \leq |r| < k$;
- $+, - : B_n \times B_n \to B_{2n}$ are vector addition and subtraction and
- $\langle \rangle : B_n \times B_n \to [-n^2, n^2]$ is the binary predicate of the inner product.

The metric on each sort is given by $d(x, y) = \sqrt{\langle x - y, x - y \rangle}$. Every operation uniformly continuous; the continuity moduli are standard.
Hilbert spaces over \mathbb{R}

We identify a **Hilbert space** over \mathbb{R} with a many-sorted metric structure

$$(\{B_n\}_{n \in \omega}, 0, \{l_{mn}\}_{m < n}, \{\lambda_r\}_{r \in \mathbb{R}}, +, −, \langle \rangle)$$, where

- B_n is the ball of elements of norm $\leq n$,
- $l_{mn} : B_m \rightarrow B_n$ is the inclusion map,
- $\lambda_r : B_m \rightarrow B_{km}$ is scalar multiplication by r, with k the unique integer satisfying $k \geq 1$ and $k - 1 \leq |r| < k$;
- $+, − : B_n \times B_n \rightarrow B_{2n}$ are vector addition and subtraction and
- $\langle \rangle : B_n \times B_n \rightarrow [-n^2, n^2]$ is the binary predicate of the inner product.

The metric on each sort is given by $d(x, y) = \sqrt{\langle x - y, x - y \rangle}$.

Every operation uniformly continuous; the continuity moduli are standard.
Hilbert spaces over \mathbb{R}

We identify a **Hilbert space** over \mathbb{R} with a many-sorted metric structure

$$(\{B_n\}_{n \in \omega}, 0, \{l_{mn}\}_{m < n}, \{\lambda_r\}_{r \in \mathbb{R}}, +, -, \langle \rangle),$$

where

- B_n is the ball of elements of norm $\leq n$,
- $l_{mn} : B_m \to B_n$ is the inclusion map,
- $\lambda_r : B_m \to B_{km}$ is scalar multiplication by r, with k the unique integer satisfying $k \geq 1$ and $k - 1 \leq |r| < k$;
- $+, - : B_n \times B_n \to B_{2n}$ are vector addition and subtraction and
- $\langle \rangle : B_n \times B_n \to [-n^2, n^2]$ is the binary predicate of the inner product.

The metric on each sort is given by $d(x, y) = \sqrt{\langle x - y, x - y \rangle}$.

Every operation uniformly continuous; the continuity moduli are standard.
Hilbert spaces over \mathbb{C}

This approach can be extended to complex Hilbert spaces.

$\left(\{B_n\}_{n \in \omega}, 0, \{l_{mn}\}_{m < n}, \{\lambda_c\}_{c \in \mathbb{C}}, +, -, \langle \rangle Re, \langle \rangle Im \right)$,

- We only extend the family $\lambda_r : B_m \rightarrow B_{km}, r \in \mathbb{R}$, to a family $\lambda_c : B_m \rightarrow B_{km}, c \in \mathbb{C}$, of scalar products by $c \in \mathbb{C}$, with k the unique integer satisfying $k \geq 1$ and $k - 1 \leq |c| < k$.
- The inner product is represented by two predicates: Re- and Im-parts of the inner product.

Infinite dimensional Hilbert spaces are axiomatizable as follows:

$$\inf_{x_1, \ldots, x_n} \max_{1 \leq i < j \leq n}(|\langle x_i, x_j \rangle - \delta_{i,j}|) = 0,$$

$$\delta_{i,j} \in \{0, 1\} \text{ with } \delta_{i,j} = 1 \iff i = j,$$

It is known that this class is κ-categorical for all infinite κ, and the corresponding continuous theory admits elimination of quantifiers.
Hilbert spaces over \mathbb{C}

This approach can be extended to complex Hilbert spaces.

$$(\{ B_n \}_{n \in \omega}, 0, \{ I_{mn} \}_{m < n}, \{ \lambda_c \}_{c \in \mathbb{C}}, +, -, \langle \rangle_{Re}, \langle \rangle_{Im}),$$

- We only extend the family $\lambda_r : B_m \to B_{km}$, $r \in \mathbb{R}$, to a family $\lambda_c : B_m \to B_{km}$, $c \in \mathbb{C}$, of scalar products by $c \in \mathbb{C}$, with k the unique integer satisfying $k \geq 1$ and $k - 1 \leq |c| < k$.
- The inner product is represented by two predicates: Re- and Im-parts of the inner product.

Infinite dimensional Hilbert spaces are axiomatizable as follows:

$$\inf_{x_1, \ldots, x_n} \max_{1 \leq i < j \leq n} (|\langle x_i, x_j \rangle - \delta_{i,j}|) = 0,$$

$$\delta_{i,j} \in \{0, 1\} \text{ with } \delta_{i,j} = 1 \iff i = j,$$

It is known that this class is κ-categorical for all infinite κ, and the corresponding continuous theory admits elimination of quantifiers.
To study unitary representations of finitely generated groups we fix a natural number t and consider the class of *dynamical Hilbert spaces* in the extended signature

$$\left(\{ B_n \}_{n \in \omega}, 0, \{ I_{mn} \}_{m < n}, \{ \lambda_c \}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle_{Re}, \langle \rangle_{Im}, U_1, \ldots, U_t \right),$$

where U_j, $1 \leq j \leq t$, are symbols of unitary operators of \mathbb{H}.

- We may assume that all U_j are defined only on B_1.
- We add to each U_i the symbol U'_i for the operator U_i^{-1}.
- Then we also add the axioms

$$\sup_{v \in B_1} d(U'_i U_i(v), v) \leq 0 \text{ and } \sup_{v \in B_1} d(U_i U'_i(v), v) \leq 0.$$
To study unitary representations of finitely generated groups we fix a natural number t and consider the class of dynamical Hilbert spaces in the extended signature

$$\left(\{ B_n \}_{n \in \omega}, 0, \{ I_{mn} \}_{m < n}, \{ \lambda_c \}_{c \in \mathbb{Q}[i]},+, -, \langle \rangle_{Re}, \langle \rangle_{Im}, U_1, \ldots, U_t \right),$$

where U_j, $1 \leq j \leq t$, are symbols of unitary operators of \mathbb{H}.

- We may assume that all U_j are defined only on B_1.
- We add to each U_i the symbol U'_i for the operator U_i^{-1}.
- Then we also add the axioms

$$\sup_{v \in B_1} d(U'_i U_i(v), v) \leq 0 \text{ and } \sup_{v \in B_1} d(U_i U'_i(v), v) \leq 0.$$
To study unitary representations of finitely generated groups we fix a natural number t and consider the class of *dynamical Hilbert spaces* in the extended signature

$$(\{B_n\}_{n\in\omega}, 0, \{I_{mn}\}_{m<n}, \{\lambda_c\}_{c\in\mathbb{Q}[i]}, +, -, \langle \rangle_{Re}, \langle \rangle_{Im}, U_1, \ldots, U_t),$$

where U_j, $1 \leq j \leq t$, are symbols of unitary operators of \mathbb{H}.

- We may assume that all U_j are defined only on B_1.
- We add to each U_i the symbol U'_i for the operator U_i^{-1}.
- Then we also add the axioms

$$\sup_{v \in B_1} d(U'_i U_i(v), v) \leq 0 \text{ and } \sup_{v \in B_1} d(U_i U'_i(v), v) \leq 0.$$
Unitary representations

To study unitary representations of finitely generated groups we fix a natural number \(t \) and consider the class of *dynamical Hilbert spaces* in the extended signature

\[
(\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, \{\lambda_c\}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle_{\text{Re}}, \langle \rangle_{\text{Im}}, U_1, \ldots, U_t),
\]

where \(U_j, 1 \leq j \leq t \), are symbols of unitary operators of \(\mathbb{H} \).

- We may assume that all \(U_j \) are defined only on \(B_1 \).
- We add to each \(U_i \) the symbol \(U'_i \) for the operator \(U_i^{-1} \).
- Then we also add the axioms

\[
\sup_{v \in B_1} d(U'_i U_i(v), v) \leq 0 \quad \text{and} \quad \sup_{v \in B_1} d(U_i U'_i(v), v) \leq 0.
\]
Pseudocompactness. Problem.

Is every unitary representation of a t-generated group pseudocompact as a structure of the form

$$(\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m < n}, \{\lambda_c\}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle_{Re}, \langle \rangle_{Im}, U_1, ..., U_t)?$$

i.e. is it elementarily equivalent to a metric ultraproduct of structures of this form which correspond to finite dimensional representations?
Is every unitary representation of a t-generated group pseudocompact as a structure of the form

$$\left(\{B_n\}_{n \in \omega}, 0, \{I_{mn}\}_{m<n}, \{\lambda_c\}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle_{Re}, \langle \rangle_{Im}, U_1, \ldots, U_t \right)$$

i.e. is it elementarily equivalent to a metric ultraproduct of structures of this form which correspond to finite dimensional representations?
The **metric** in the ultraproduct $\prod_I (X_i, d_i)/D$ is defined by

$$d(((x_i)_I, (x'_i)_I) = \lim_{i \to D} d_i(x_i, x'_i),$$

i.e. by the rule that the distance between $(x_i)_I$ and $(x'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(x_i, x'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

$\prod_I (X_i, d_i)/D$ consists of classes of the relation $d(((x_i)_I, (y_i)_I) = 0$.
The **metric** in the ultraproduct $\prod_i (X_i, d_i)/D$ is defined by

$$d((x_i)_I, (x'_i)_I) = \lim_{i \to D} d_i(x_i, x'_i),$$

i.e. by the rule that the distance between $(x_i)_I$ and $(x'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(x_i, x'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

$\prod_i (X_i, d_i)/D$ consists of classes of the relation $d((x_i)_I, (y_i)_I) = 0$.

Aleksander Ivanov
Pseudocompact unitary representations of finitely generated groups
Ultraproducts

The **metric** in the ultraproduct $\prod_{i}(X_i, d_i)/D$ is defined by

$$d((x_i)_I, (x'_i)_I) = \lim_{i \to D} d_i(x_i, x'_i),$$

i.e. by the rule that the distance between $(x_i)_I$ and $(x'_i)_I$ is in the interval $(\varepsilon_1, \varepsilon_2)$ if and only if the set $\{i : d_i(x_i, x'_i) \in (\varepsilon_1, \varepsilon_2)\}$ belongs to the ultrafilter D.

$\prod_{i}(X_i, d_i)/D$ consists of classes of the relation $d((x_i)_I, (y_i)_I) = 0$.

Aleksander Ivanov
Pseudocompact unitary representations of finitely generated groups
Let \mathcal{K} be a class of metric groups with metrics bounded by some number s. We say that a group G is \mathcal{K}-approximable if it embeds into a metric ultraproduct of groups from \mathcal{K}.

Let \mathcal{K} consist of unitary groups $U(n)$ together with the metric induced by the operator norm $\| T \|_{op} = \sup_{\| v \|=1} \| Tv \|$. We put $d(T, Q) = \| T - Q \|_{op}$.

Groups approximable by these metric groups are called MF (matricial field).

It is an open question if there are non-MF groups.

A. Tikuisis, S. White and W. Winter proved that amenable groups are MF.

A. Korchagin shows that in many respects property MF is similar to soficity and hyperlinearity.
Let \mathcal{K} be a class of metric groups with metrics bounded by some number s. We say that a group G is \mathcal{K}-approximable if it embeds into a metric ultraproduct of groups from \mathcal{K}.

Let \mathcal{K} consist of unitary groups $U(n)$ together with the metric induced by the operator norm $\| T \|_{op} = \sup_{\| v \| = 1} \| T v \|$. We put $d(T, Q) = \| T - Q \|_{op}$.

Groups approximable by these metric groups are called MF (matricial field).

It is an open question if there are non-MF groups.

A. Tikuisis, S. White and W. Winter proved that amenable groups are MF.

A. Korchagin shows that in many respects property MF is similar to soficity and hyperlinearity.
Let \mathcal{K} be a class of metric groups with metrics bounded by some number s. We say that a group G is \mathcal{K}-approximable if it embeds into a metric ultraproduct of groups from \mathcal{K}.

Let \mathcal{K} consist of unitary groups $U(n)$ together with the metric induced by the operator norm $\|T\|_{op} = \sup_{\|v\|=1} \|Tv\|$. We put $d(T,Q) = \|T - Q\|_{op}$.

Groups approximable by these metric groups are called MF (matricial field).

It is an open question if there are non-MF groups.

A. Tikuisis, S. White and W. Winter proved that amenable groups are MF.

A. Korchagin shows that in many respects property MF is similar to soficity and hyperlinearity.
Property MF

- Let \mathcal{K} be a class of metric groups with metrics bounded by some number s. We say that a group G is \mathcal{K}-approximable if it embeds into a metric ultraproduct of groups from \mathcal{K}.

- Let \mathcal{K} consist of unitary groups $U(n)$ together with the metric induced by the operator norm $\| T \|_{op} = \sup_{\|v\|=1} \|Tv\|$. We put $d(T, Q) = \| T - Q \|_{op}$.

- Groups approximable by these metric groups are called MF (matricial field).

- It is an open question if there are non-MF groups.

- A. Tikuisis, S. White and W. Winter proved that amenable groups are MF.

- A. Korchagin shows that in many respects property MF is similar to soficity and hyperlinearity.
Theorem

Let $G = \langle g_1, \ldots, g_n \rangle$ be a finitely generated group. The group G is MF if and only if there is a dynamical Hilbert space in the signature

$$\left(\{ B_l \}_{l \in \omega}, 0, \{ I_{kl} \}_{k < l}, \{ \lambda_c \}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle \text{Re}, \langle \rangle \text{Im}, U_1, U_2, \ldots, U_n \right)$$

which is an ultraproduct of finite dimensional dynamical Hilbert spaces of the same signature and the group $\langle U_1, \ldots, U_n \rangle$ is isomorphic to G under the map taking U_i to g_i, $1 \leq i \leq n$.

Corollary. If every unitary representation of a finitely generated group is pseudocompact, then every group satisfies property MF.
Let $G = \langle g_1, \ldots, g_n \rangle$ be a finitely generated group. The group G is MF if and only if there is a dynamical Hilbert space in the signature

$$\left(\{ B_l \}_{l \in \omega}, 0, \{ I_{kl} \}_{k < l}, \{ \lambda_c \}_{c \in \mathbb{Q}[i]}, +, -, \langle \rangle_{\text{Re}}, \langle \rangle_{\text{Im}}, U_1, U_2, \ldots, U_n \right)$$

which is an ultraproduct of finite dimensional dynamical Hilbert spaces of the same signature and the group $\langle U_1, \ldots, U_n \rangle$ is isomorphic to G under the map taking U_i to g_i, $1 \leq i \leq n$.

Corollary. If every unitary representation of a finitely generated group is pseudocompact, then every group satisfies property MF.
Other observations

- Any dynamical Hilbert space corresponding to a representation of a cyclic group is pseudocompact. (Spectral decomposition theorem and previous results of Henson, Argoty and Berenstein.)

- Any unitary representation of a finitely generated group which is existentially closed as a dynamical Hilbert space is pseudocompact.
The **left regular** representation of G is obtained by the action of G on $l^2(G)$ defined by the unitary operators $U_g : f(h) \mapsto f(g^{-1}h)$.

Theorem

Let G be a finitely generated LEF group. Then the dynamical G-space $l^2(G)$ is pseudo finite dimensional.

- A group H is called LEF if for every finite $F \subseteq H$ there is a finite group $S \supseteq F$ so that $\forall a, b, c \in F \ H \models a \cdot b = c$ if and only if $S \models a \cdot b = c$.
- Residually finite groups are LEF.
- **Corollary.** Any finitely generated LEF group is MF (Carrion, Dadarlat, Eckhardt, 2013).
- This together with some results of Berenstein imply that when G is a f.g. amenable LEF group, then all existentially closed unitary G-representations are pseudocompact.
Regular representations

The **left regular** representation of \(G \) is obtained by the action of \(G \) on \(l^2(G) \) defined by the unitary operators \(U_g : f(h) \to f(g^{-1}h) \).

Theorem

Let \(G \) be a finitely generated LEF group. Then the dynamical \(G \)-space \(l^2(G) \) is pseudo finite dimensional.

- A group \(H \) is called LEF if for every finite \(F \subseteq H \) there is a finite group \(S \supseteq F \) so that \(\forall a, b, c \in F \ H \models a \cdot b = c \) if and only if \(S \models a \cdot b = c \).
- Residually finite groups are LEF.
- **Corollary.** Any finitely generated LEF group is MF (Carrion, Dadarlat, Eckhardt, 2013).
- This together with some results of Berenstein imply that when \(G \) is a f.g. amenable LEF group, then all existentially closed unitary \(G \)-representations are pseudocompact.
Regular representations

The **left regular** representation of G is obtained by the action of G on $l^2(G)$ defined by the unitary operators $U_g : f(h) \mapsto f(g^{-1}h)$.

Theorem

Let G be a finitely generated LEF group. Then the dynamical G-space $l^2(G)$ is pseudo finite dimensional.

- A group H is called LEF if for every finite $F \subseteq H$ there is a finite group $S \supseteq F$ so that $\forall a, b, c \in F \ H \models a \cdot b = c$ if and only if $S \models a \cdot b = c$.
- Residually finite groups are LEF.
- **Corollary.** Any finitely generated LEF group is MF (Carrion, Dadarlat, Eckhardt, 2013).
- This together with some results of Berenstein imply that when G is a f.g. amenable LEF group, then all existentially closed unitary G-representations are pseudocompact.
The **left regular** representation of G is obtained by the action of G on $l^2(G)$ defined by the unitary operators $U_g : f(h) \mapsto f(g^{-1}h)$.

Theorem

Let G be a finitely generated LEF group. Then the dynamical G-space $l^2(G)$ is pseudo finite dimensional.

- A group H is called LEF if for every finite $F \subseteq H$ there is a finite group $S \supseteq F$ so that $\forall a, b, c \in F \; H \models a \cdot b = c$ if and only if $S \models a \cdot b = c$.
- Residually finite groups are LEF.
- **Corollary.** Any finitely generated LEF group is MF (Carrion, Dadarlat, Eckhardt, 2013).
- This together with some results of Berenstein imply that when G is a f.g. amenable LEF group, then all existentially closed unitary G-representations are pseudocompact.
Regular representations

The **left regular** representation of G is obtained by the action of G on $l^2(G)$ defined by the unitary operators $U_g : f(h) \rightarrow f(g^{-1}h)$.

Theorem

Let G be a finitely generated LEF group. Then the dynamical G-space $l^2(G)$ is pseudo finite dimensional.

- A group H is called LEF if for every finite $F \subseteq H$ there is a finite group $S \supseteq F$ so that $\forall a, b, c \in F \ H \models a \cdot b = c$ if and only if $S \models a \cdot b = c$.
- Residually finite groups are LEF.
- **Corollary.** Any finitely generated LEF group is MF (Carrion, Dadarlat, Eckhardt, 2013).
- This together with some results of Berenstein imply that when G is a f.g. amenable LEF group, then all existentially closed unitary G-representations are pseudocompact.
Universal statements

Theorem

Any dynamical Hilbert space corresponding to a representation of a finitely generated group is embeddable into a metric ultraproduct of finite dimensional unitary representations.

Corollary. Any statement of the form

$$\sup_{x_1} \ldots \sup_{x_n} \phi(\bar{x}) \leq q,$$

where ϕ is quantifier free and $q \in \mathbb{Q}$,

is satisfied in a representation of a finitely generated group if and only if it is satisfied in a finite dimensional representation of a finitely generated group.
Universal statements

Theorem

Any dynamical Hilbert space corresponding to a representation of a finitely generated group is embeddable into a metric ultraproduct of finite dimensional unitary representations.

Corollary. Any statement of the form

$$\sup_{x_1} \ldots \sup_{x_n} \phi(\bar{x}) \leq q$$

where ϕ is quantifier free and $q \in \mathbb{Q}$,

is satisfied in a representation of a finitely generated group if and only if it is satisfied in a finite dimensional representation of a finitely generated group.