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Bounded functional interpretation
Weak sequential compactne

Other minings

Proof mining is a research program that analyzes noneffective
proofs in order to obtain new quantitative information using
techniques from Proof Theory.

e U. Kohlenbach: monotone functional interpretation (1996)

e General Logic Metatheorems (2003-05)

e F. Ferreira and P. Oliva: bounded functional interpretation (2005)

2019 LC2019 Pedro Pinto



Bounded functional interpr

k sequenti

We will look at Cauchy sequences (up), i.e.
.. 1
VkeNdne NVi,j>n (|u,- — ujf| < )

In general, it is not possible to guarantee a (computable) bound for
n in terms of k.

2019 LC2019 Pedro Pinto



Bounded functional interpretati

Weak sequential compact
Other mir

We will look at Cauchy sequences (up), i.e.
.. 1
VkeNdne NVi,j>n (|u,- — ujf| < )

In general, it is not possible to guarantee a (computable) bound for
nin terms of k.Instead we turn to the "metastable" version,

1
Vk e Nvf e N¥3n e NVi, j € [n, f(n)] <|u,- —uj| < /<+1> ,

for which we will be able to extract a bound ¢ : N x NN — N such
that

1
Vk € NYf € N"3n < ¢(k, F)Vi,j € [n, f(n)] (Iw -yl < k+1> :
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Projection argument
Weak sequential compactness Weak seq. compactness
Quantitative results

A theorem by F.E. Browder

Consider X a Hilbert space and a mapping T : X — X. We say
that T is nonexpansive if Vx,y € X (| T(x) — T(y)|| < |x — y]|)-

Theorem (Browder, 1967)

Let C be a closed, bounded, convex subset of X, uy a point in C
and T : C — C a nonexpansive mapping. For each n e N consider
the strict contraction defined by T,(x) := up + (1 — n+r1) T(x)
and let u, be its unique fixed point.

Then (up) converges strongly to a fixed point of T, the closest to
up.

n+1
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Bounded functional interpretation
Weak sequential compactness

Other mini

We denote F := Fix(T) :={xe C : T(x) = x}.
A central point in Browder's original proof is a projection argument:

Ixe FVy e F (Jup — x| < |uo — yl]) -
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Bounded functional interpret
Weak sequential comp

Other minings

We denote F := Fix(T) :={xe C : T(x) = x}.
A central point in Browder's original proof is a projection argument:

Ix € FYy € F(Juo — x| < [Juo = y[)-

Kohlenbach remarked that the following already suffices

1
VkeNixe Fvye F — x| £ — — .
xe Fiye F (o —xl < luo =yl + )
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Bounded functional interpretation
Weak sequential compactness

Other minings

We denote F := Fix(T) :={xe C : T(x) = x}.
A central point in Browder's original proof is a projection argument:

Ix € FYy € F(Juo — x| < [Juo = y[)-

Kohlenbach remarked that the following already suffices

1
VkeNixe Fvye F — —
xe Py F (-l < lw -yl + ).

With b > diam(C) and r := b(k + 1), we get for all k € N and all
f : N — N monotone, there are n < f(r)(O) and x € C such that

1
_ < - -
IT6) = x| < g and

1 1
e (1T =yl < g = loo—xl < Loyl + 51 )
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| functional interpretation
sequential compactness

Other minings

The next troublesome step in Browder’s proof is a weak sequential
compactness argument.
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Bounded functional interpretation
Weak sequential compactness

Other minings

The next troublesome step in Browder’s proof is a weak sequential
compactness argument.

Weak seq. compactness (and the demiclosedness principle) is used
to show:

lim sup (Pr(up) — up, Pr(up) — upy <0, i.e.

1
Vk € Ndne NVm > n <<PF(U0) — up, Pr(uo) — um) < k+1> :
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Bounded functional interpretation
Weak sequential compactness

Other minings

The next troublesome step in Browder’s proof is a weak sequential
compactness argument.

Weak seq. compactness (and the demiclosedness principle) is used
to show:

lim sup (Pr(up) — up, Pr(up) — upy <0, i.e.

1
Vk € Ndne NVm > n <<PF(U0) — up, Pr(uo) — um) < k+1> :

We don't have access to Pg(up). Instead we want to show
1
Vk e NIx e Fine NYm > n(<x—u0,x—um>< )

This statement can be shown without invoking weak sequential
compactness and using instead a collection argument characteristic
of the bounded functional interpretation (or UB in the context of
the monotone functional interpretation).
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Projection argument
Weak sequential compactness Weak seq. compactness
Quantitative results

Theorem (Ferreira-Leustean-Pinto, 2019)

(On a formal system T,;) Consider o : X x X > R, T : X —» X
and (uy,) a sequence of elements of X such that d(T (up), u,) — 0.

IfVkeNixe Fiy e F (cp(x,x) < o(x,y) + #1) then
Vk e Nax e Fine NVm = n (go(x, X) < @(x, tm) + #1)
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Bounded functional interp
Weak sequential comp

Other minings

(On a formal system Ty},) Consider o : X x X > R, T : X — X
and (uy,) a sequence of elements of X such that d(T (up), u,) — 0.

IfVkeNixe Fiy e F ((p(x,x) < o(x,y) + kiﬂ) then

Vk € N3x € Fane NVm = n (go(x,x) < (X, Um) + ,%H)

E.g., for Browder, ¢(x,y) = {ug — x, y).

In the end, the quantitative final version, this collection argument

disappears — the idea is similarly to that of Harvey Friedman’s
conservation result of WKLg over RCAg.
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Bounded functional interpretation
Weak sequential compactness

Other minings

Suppose the existence of monotone functions « and [ satisfying:
Vk e NVf:N — NIN < a(k, f)
Vne [N, f(N)](d(un, T(up)) < ——);
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Bounded functional interpretation
Weak sequential compactness

Other minings

Suppose the existence of monotone functions « and [ satisfying:
Vk e NVf:N — NIN < a(k, f)

vne [N, f(N)](d(un, T(un)) );

<7
k+1
Vke NVf:N - NIN < f(k, f)Ixe X

(d(x, T(x)) < - AVyeX

1
f(N) +

(00, T0)) < g = #00x) < 9l)) + 1) )
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Bounded functional interpretation
Weak sequential compactness

Other minings

Suppose the existence of monotone functions « and [ satisfying:
Vk e NVf:N — NIN < a(k, f)

vne [N, f(N)](d(un, T(un)) );

<7
k+1
Vke NVf:N - NIN < f(k, f)Ixe X

(M&T@»< - AVyeX

1
f(N) +
(dly, TO) < o7 = 90620 < 0l y) + ) ).

N+1 k+1
Then Yk e NVf : N - NIN < ¢(k, f)Ixe X

d(x, T(x)) < m

where (k, f) := a(B(k, f), f), with F(m) := f(a(m, f))

2019 LC2019 Pedro Pinto
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Bounded functional interpretation

Weak sequential compactness
Other minings

Under the conditions of Browder's theorem, let b€ N be an upper
bound on the diameter of C. Then, for all k € N and every
monotone function f : N — N,

1
< 9 .7' 9 i ] < — )
N < gl i € N FN)] (1= uil < )

where ¢p(k, f) := 12b2(h(R)(0) + 1)2 + b,
with R := 64b*(k + 1)* and
h(m) := max{8b(f(12b?(m+1)?>+b)+1)(k+1)2—1;12b(m+1)?}.
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Bounded functional interpretation
Weak sequential compactness

Other minings

Under the conditions of Browder's theorem, let b€ N be an upper
bound on the diameter of C. Then, for all k € N and every
monotone function f : N — N,

1
< 9 .7' 9 i ] < — )
N < gl i € N FN)] (1= uil < )

where ¢p(k, f) := 12b2(h(R)(0) + 1)2 + b,
with R := 64b*(k + 1)* and
h(m) := max{8b(f(12b?(m+1)?>+b)+1)(k+1)2—1;12b(m+1)?}.

The extracted bound does not depend on the Hilbert space X
neither on the map T. The dependency on C is only in the form of
a bound b for its diameter.
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Bounded functional interpretation
Weak sequential compactness

Other minings

Let X be a real Hilbert space and C € X is a nonempty, closed,
convex and bounded subset. Let Tg, ---, Ty_1: C—>Cbel>1
nonexpansive mappings.

For any n € N, define the maps

Up = nmod £-
and assume

Fi= () Fix(Uj) = Fix(Up—1 - Ui Up) =

i<é—1

Fix(UgUp—1 -+ Ur) =
= oo = Fix(Up_p--- UpUp_1) # &.
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Bounded functional interpretation
Weak sequential compactness

Other minings

Consider a sequence (x,) defined by:

xp € C, Xp4+1 = /\n+1X0+(1—/\n+1)Un+1(Xn) with ()\n) c [07 1].

Under the previous hypothesis, if (\,) <0, 1| satisfies:
LlimA,=0; 2. ) (M) =+0; 3. |An— Anppe| < +o0;
n
n n
then the sequence (x,) strongly converges to Pr(xp).

This result extends the well-known convergence result by Wittmann
(¢=1).
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Bounded functional interpretation
Weak sequential compactness

Other minings

For a quantitative version of the condition on the set of common
fixed points, we ask for a monotone function 7 : N — N satisfying

Vke NVme NVue C

1 .
[t = Unse -+ Umin ()| < =~ — Vi < € |u— Ui(u)] <

1
(k) +1 k+1
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Bounded functional interpretatio
Weak sequential compactness

Other minings

For a quantitative version of the condition on the set of common
fixed points, we ask for a monotone function 7 : N — N satisfying

Vke NVme NVue C
1

_ < -
0= U Unia(0)] < 55

1
Vi</t|u—U; <—
Vi < = U)] < 1
For the quantitative version of the conditions on the sequence
(An)n we assume the existence of monotone function p, v and &
satisfying:
Vk e NVn = (k) (An < £57);

v(K)
VkeN( Y A =k);
i=0
&(k)+n
VkeNVAeN( Y A —Aipd < 29)-
i=¢(k)+1

2019 LC2019 Pedro Pinto



Bounded functional interpretation
Weak sequential compactness

Other minings

The quantitative version of Bauschke's theorem:

Under the previous conditions and with the functions as before we
have, for any k € N and monotone function f : N — N,

1

3N < Gk F)Visj € N, AN (b = gl < 1=

).
Since for (A,) <]0, 1], we have >, A\, = o0 is equivalent to

[1(1 = Xn) =0, it was also possible to obtain a similar bound that
uses a rate of convergence v/ : N — N for (] [7_;(1 — Aj)) towards
zero, instead of v.
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Bounded functional interpretation
Weak sequential compactness

Other minings

The quantitative version of Bauschke's theorem:

Under the previous conditions and with the functions as before we
have, for any k € N and monotone function f : N — N,

1

k+1)'

IN < Gb ek, F)Vi,je [N, FIN)] (Ixi — il <
Since for (A,) <]0, 1], we have >, A\, = o0 is equivalent to
[1(1 = Xn) =0, it was also possible to obtain a similar bound that
uses a rate of convergence v/ : N — N for (] [7_;(1 — Aj)) towards
zero, instead of v.
In particular, by making ¢ = 1, we obtain a quantitative version of

Wittmann's theorem.
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Bounded functional interpretation
Weak sequential compactness

Other minings

The quantitative version of Bauschke's theorem:

Under the previous conditions and with the functions as before we
have, for any k € N and monotone function f : N — N,

1

k+1)'

IN < Gb ek, F)Vi,je [N, FIN)] (Ixi — il <
Since for (A,) <]0, 1], we have >, A\, = o0 is equivalent to
[1(1 = Xn) =0, it was also possible to obtain a similar bound that
uses a rate of convergence v/ : N — N for (] [7_;(1 — Aj)) towards
zero, instead of v.
In particular, by making ¢ = 1, we obtain a quantitative version of
Wittmann's theorem.
(See also Daniel Kérnlein's PhD thesis where he analyzed a
generalization of this result due to Yamada.)
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functional interpretation

sequential compac

Other mlnlngs

A multi-valued function A : X — 2X is said to be monotone if
Vx,x € XVy € A(x),y e A(X), (x—x',y —y»=0

A monotone operator is maximally monotone if its graph is not

strictly contained in the graph of any monotone operator. Let

zer(A) := {x € X : 0 € A(x)} denote the set of zeros of A.

One major question: How to find a zero of A?
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A multi-valued function A : X — 2X is said to be monotone if
Vx,x' € XVy € A(x),y' € A(X), (x =X,y —y'y > 0.

A monotone operator is maximally monotone if its graph is not
strictly contained in the graph of any monotone operator. Let
zer(A) := {x € X : 0 € A(x)} denote the set of zeros of A.

One major question: How to find a zero of A?

For each 3 > 0, the single-valued resolvent function
Js = (Id + BA) ! is nonexpansive and

Fix(Jg) = zer(A).
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Proximal point algorithm
HPPA
Other minings mPPA

Variants of PPA

(PPA) Xnt1 1= Jg,(xn)

o (Rockafellar) The iteration (PPA) is weakly convergent;
o (Giller) However, (PPA) in general does not converge strongly;
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Bounded functional interp

uential co

(PPA) Xnt1 := Jg, (xn)

o (Rockafellar) The iteration (PPA) is weakly convergent;
o (Giller) However, (PPA) in general does not converge strongly;
@ Variations of (PPA) to try unsure strong convergence:

(HPPA)  xpp1 1= Apxo + (1 = Ap)J3, (xn)
(mPPA)  Xp41 1= Al + YnXn + On s, (Xn)

where (8,) € R, xo,u € X, (\n), (7n), (6n) <]0,1[ and, in
(mPPA), for all ne N, A\, + v, + 9, = 1.
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Bounded functional interp

uential co

(PPA) Xnt1 1= Jg,(Xn)+e€n

o (Rockafellar) The iteration (PPA) is weakly convergent;
o (Giller) However, (PPA) in general does not converge strongly;
@ Variations of (PPA) to try unsure strong convergence:

(HPPA)  Xnq1 := Apxo + (1 — An)Js, (Xn)+en
(mPPA)  Xpy1 := Al + YnXn + 0nJs, (Xn)+e€n

where (8,) € R, xo,u € X, (\n), (7n), (6n) <]0,1[ and, in
(mPPA), for all ne N, A\, + v, + 9, = 1.
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Proximal point algorithm
HPPA
Other minings mPPA

Projection argument again

In our treatment of the projection, the boundedness of the set C
was crucial.
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In our treatment of the projection, the boundedness of the set C
was crucial.

If, instead of C being bounded, we know F = Fix(Jg) to be a
nonempty set, we can still get a simplified treatment of the
projection.

Let N > ||ug — z| + ||ug| for some z € F. Then the original
projection argument is equivalent to the one restricted to

Fn BN(O):

Ix e F n By(0)Vy € F n Bn(0) (JJuo — x| < |uo — y))
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Proximal point algorithm
HPPA
Other minings mPPA

(HPPA)  Xn41:= Apxo + (1 — An)Jg,(xn) + €n
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Proximal point algorithm
HPPA
Other minings mPPA

(HPPA)  Xn41:= Apxo + (1 — An)Jg,(xn) + €n

(C1) hi

(C2) D Ap = o0

(C3) lim —|>\,,+1 Aol —
(C4) lim B, —nﬁ for some 3 > 0;
(C5) 2len] < o0

Theorem (Boikanyo-Morosanu, 2011)

Consider a sequence (x,) defined by (HPPA) and satisfying
(C1)-(C5). Then (x,) converges strongly to a zero of A.
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Proximal point algorithm
HPPA
Other minings mPPA

(HPPA)  Xn41:= Apxo + (1 — An)Jg,(xn) + €n

Theorem (Boikanyo-Morosanu, 2011)

Consider a sequence (x,) defined by (HPPA) and satisfying
(C1)-(C5). Then (x,) converges strongly to a zero of A.

In the proof, the convergence of (x,) is reduced to that of a
sequence (u,) — an iteration in the “style of Browder".
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Proximal point algorithm
HPPA
Other minings mPPA

HPPA: quantitative

(Q1) Yk e NVn = pu(k) (A < 25);

v(k)
(Q2) Vke N (Z A= >
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al interpretation
equential compactness

Other minings

We computed a function © for:

Consider (x,) defined by (HPPA), B a real number and monotone
functions 1, v, £, B and E satisfying respectively (Q1)-(Q5).

Let b e N be such that B > ﬁ.

Consider (up) be the sequence of the fixed points for the strict
contractions Tp(x) := Apxo + (1 — An)Js(x) and assume (up) to be
a Cauchy sequence with a bound on its metastable property given
by a (monotone) function ® : N x NN — N. Then, for all k e N
and function f : N — N there is N < O[u,v,&, B, E, b, ®|(k, ) s.t.

1

vioj € [N AT (I =51 < 7 )
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Proximal point algorithm
HPPA
Other minings mPPA

(mPPA)  Xny1 := At + YnXn + 0nJ3,(Xn) + €n

(C1) limA, =0;

(C2) S Ap = 0

(C3) 0 < liminf~, <limsupy, < 1;
(C4) Bp = B, for some 3 > 0;

(C5) 1im Bast — fin = 0

(C6) 2len] < oo
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Proximal point algorithm
HPPA
Other minings mPPA

(mPPA)  Xny1 := At + YnXn + 0nJ3,(Xn) + €n

(C1) i
(C2) 2

(C3) 0< I|m|nf'y,7 < limsupy, < 1;
(C4) Bp = B, for some 3 > 0;

(C5) lim Bps1 — Bn = O

(C6) 2len] < oo

Theorem (Yao-Noor, 2008)

Consider a sequence (x,) defined by (mPPA) and satisfying
(C1)-(C6). Then (x,) converges strongly to a zero of A.
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Proximal point algorithm
HPPA
Other minings mPPA

(mPPA)  Xny1 := At + YnXn + 0nJ3,(Xn) + €n

(C1) lim A,

(€2) Shp = oo

(C3) 0 < liminf~, <limsupy, < 1;
(C4) Bp = B, for some 3 > 0;

(C5) lim Bass — By = 0

(C6) 2len] < oo

Theorem (Yao-Noor, 2008)

Consider a sequence (x,) defined by (mPPA) and satisfying
(C1)-(C6). Then (x,) converges strongly to a zero of A.

In the proof, a certain limsup plays an essential role.

LC2019 Pedro Pinto Proof mining with the BFI



Proximal point algorithm
HPPA
Other minings mPPA

Limit superior

We want to avoid lim sup:

Lemma

Consider (a,) be a sequence of real numbers and let N € N be such
that, for allne N, 0 < a, < N. Then, for all k e N, there is a
natural number p < N(k + 1) satisfying

1
VneNm > n (XmZkL—j-l) A3dn" e NVm' = n' (Xm,g—lljil>

These rational approximations were enough for the quantitative
analysis.

(See also Kohlenbach and Sipos “The finitary content of sunny
nonexpansive retractions”)
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Proximal point algorithm
HPPA
Other minings mPPA

mPPA: quantitative

(Q5) Yk e NV = B(K)(Brr — Bl < 727)
E(k)+n

(Q6) Vk.neN lei] < 2
i=E(K)+1
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Proximal point algorithm

HPPA
Other minings mPPA

We computed a function © for:
Theorem (Dinis-Pinto)

Consider (x,) defined by (mPPA), a, b € N and monotone functions
u, v, B and E satisfying (Q1) — (Q6). Then, for all k e N and
function f : N — N there is N < ©|a, b, u,v, B, E|(k, ) s.t.

vioj € IN AT (s =1 < 7 )

k+1
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Proximal point algorithm

HPPA
Other minings mPPA

We computed a function © for:
Theorem (Dinis-Pinto)

Consider (x,) defined by (mPPA), a, b € N and monotone functions
u, v, B and E satisfying (Q1) — (Q6). Then, for all k e N and
function f : N — N there is N < ©|a, b, u,v, B, E|(k, ) s.t.

vioj € IN AT (s =1 < 7 )

k+1

Thank you!
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