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How would you describe the group Q uniquely up to isomorphism?

It is the rank 1 divisible torsion-free abelian group.

▸ How complicated is this description?

▸ Is there a simpler description?
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We write down descriptions in the logic Lω1ω. Formulas are built
using:

▸ equalities and inequalities of terms,

▸ relations,

▸ the connectives ∧, ∨, and ¬,

▸ the quantifiers ∃x and ∀x .

▸ the countably infinite connectives ⩕ and ⩔.



The property of being a rank 1 divisible torsion-free abelian group
can be expressed in Lω1ω:

▸ group axioms, e.g.:

(∀x) x + 0 = 0 + x = x

▸ abelian:
(∀x∀y) x + y = y + x

▸ torsion-free:
(∀x ≠ 0) ⩕

n≥1

nx ≠ 0

▸ rank 1:
(∀x∀y) ⩔

(n,m)≠(0,0)
nx = my

▸ divisible:
(∀x) ⩕

n≥1

(∃y) x = ny



Infinitary logic is expressive enough to describe every countable
structure.

Theorem (Scott 1965)

For every countable structure A, there is an Lω1ω formula ϕ such
that A is the only countable structure satisfying ϕ.

We call any such sentence a Scott sentence for A.

Main Idea Measure the complexity of a structure by the
complexity of the simplest Scott sentence for that
structure.



We can define a hierarchy of Lω1ω-formulas based on their
quantifier complexity after putting them in normal form.

▸ A formula is Σ0 and Π0 is it is finitary quantifier-free.

▸ A formula is Σα if it looks like

⩔
n∈N

(∃x̄)ϕn

where the ϕ are Πβ for β < α.

▸ A formula is Πα if it looks like

⩕
n∈N

(∀x̄)ϕn

where the ϕ are Σβ for β < α.



The vector space QN has a Π3 Scott sentence. We say that it is
infinite-dimensional as follows:

⩕
n∈N

(∃x1, . . . , xn) ⩕
c1,...,cn∈Q

[c1x1 +⋯ + cnxn = 0→ [c1 = c2 = ⋯ = cn = 0]]
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.



The property of being a rank 1 divisible torsion-free abelian group
can be expressed in Lω1ω:

▸ group axioms, e.g.:

(∀x) x + 0 = 0 + x = x (Π1)

▸ abelian:
(∀x∀y) x + y = y + x (Π1)

▸ torsion-free:
(∀x ≠ 0) ⩕

n≥1

nx ≠ 0 (Π1)

▸ rank 1:
(∀x∀y) ⩔

(n,m)≠(0,0)
nx = my (Π2)

▸ divisible:
(∀x) ⩕

n≥1

(∃y) x = ny (Π2)

The group Q has a Π2 Scott sentence.



One way of measuring the complexity of a structure is its Scott
rank. Many different definitions of Scott rank have been put
forward. They are almost, but not quite, equivalent. One is:

Definition (Montalbán)

The Scott rank of A is the least ordinal α such that A has a Πα+1

Scott sentence.



This is a robust notion of complexity.

Theorem (Montalbán)

Let A be a countable structure and let α a countable ordinal. The
following are equivalent:

▸ A has a Πα+1 Scott sentence.

▸ Every automorphism orbit in A is Σα-definable without
parameters.

▸ A is uniformly (boldface) ∆0
α-categorical without parameters.



A Scott sentence for the group Z consists of:

▸ the axioms for torsion-free abelian groups,

▸ for any two elements, there is an element which generates
both,

▸ there is a non-zero element with no proper divisors:

(∃g ≠ 0)⩕
n≥2

(∀h)[nh ≠ g].

These are, respectively, Π1, Π2, and Σ2. So the Scott sentence is
the conjunction of a Π2 sentence and a Σ2 sentence.

The Scott rank of Z is 2, the same as the vector space QN, even
though Z has a simpler Scott sentence.

Scott rank does not make all the distinctions that we want it to;
we need a finer notion.



Definition
A formula is d-Σα if it is the conjunction of a Σα formula and a
Πα formula.

So the group Z has a d-Σ2 Scott sentence.

The picture we have now looks like:

Σ1
##

Σ2
##

Σ3
##

Σω

  
Σ0

==

!!

d-Σ1

;;

##

d-Σ2

;;

##

d-Σ3
// ⋯ ⋯

Π1

;;

Π2

;;

Π3

;;

Πω

>>

This is not a complete picture; there are other possible
complexities.



We want to make the following definition, but we have not been
able to say formally what a “complexity” of a sentence is.

Definition
The Scott sentence complexity of a countable structure A is the
least complexity of a Scott sentence for A.



There are some restrictions on the possible Scott complexities of
structures.

For example, Σω is not a possible Scott sentence complexity:
Suppose A has a Σω Scott sentence

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4 ∨⋯

where each ϕi is Σn for some n. For some i , A ⊧ ϕi . Then ϕi is a
Σn Scott sentence for A.

A deeper theorem is:

Theorem (A. Miller)

Let A be a countable structure. If A has a Σα+1 Scott sentence,
and also has a Πα+1 Scott sentence, then A has a d-Σα Scott
sentence.



To make this more formal, we turn to Wadge degrees.

Fix a language L, and for simplicity assume that L is relational.
We can view the space of L-structures with domain ω as a Polish
space isomorphic to Cantor space 2ω. Call this Mod(L).

E.g., if L = {R} with R unary, associate to an L-structure
M= (ω,RM) the element α ∈ 2ω with

α(n) =

⎧⎪⎪
⎨
⎪⎪⎩

0 n ∉ RM

1 n ∈ RM



Lopez-Escobar proved a powerful theorem relating Lω1ω classes
and Borel sets in Mod(L). Vaught proved a level-by-level version
of this theorem:

Theorem (Vaught)

Let K be a subclass of Mod(L) which is closed under isomorphism.

K is Σ0
α in the Borel hierarchy.

⇕

K is axiomatized by an infinitary Σα sentence.

The same is true for Π0
α and Πα, the Ershov hierarchy (including

d-Σα), etc.



We measure the complexity of subsets of Mod(L) using the
Wadge hierarchy.

Definition (Wadge)

Let A and B be subsets of Cantor space 2ω. We say that A is
Wadge reducible to B, and write A ≤W B, if there is a continuous
function f on 2ω with A = f −1[B], i.e.

x ∈ A⇐⇒ f (x) ∈ B.

The Wadge hierarchy has a lot of structure.

Theorem (Martin and Monk, AD)

The Wadge order is well-founded.

Theorem (Wadge’s Lemma, AD)

Given A,B ⊆ ωω, either A ≤W B or B ≤W ωω −A.



Given a countable structure A, let Iso(A) be the set of isomorphic
copies of A in Mod(L).

By the Lopez-Escobar theorem, informally we see that the
complexity of Scott sentences for A corresponds to the location of
Iso(A) in the Wadge hierarchy.

Definition
The Scott sentence complexity of a structure A is the Wadge
degree of Iso(A).



Theorem (A. Miller 1983, Alvir-Greenberg-HT-Turetsky)

The possible Scott complexities of countable structures A are:

1. Πα for α ≥ 1,

2. Σα for α ≥ 3 a successor ordinal,

3. d−Σ0
α for α ≥ 1 a successor ordinal.

There is a countable structure with each of these Wadge degrees.

Wadge’s Lemma is the key ingredient to narrow it down to these
possibilities.

That Σ2 is not possible was shown by A. Miller for relational
structures and by Alvir-Greenberg-HT-Turetsky for general
structures.

A. Miller constructed examples of most of these except for Σλ+1

for λ a limit ordinal; these were constructed by
Alvir-Greenberg-HT-Turetsky.



Proposition (Montalbán, Alvir-Greenberg-HT-Turetsky)

Let A be a countable structure. Then:

1. A has a Σα+1 Scott sentence if and only if for some c̄ ∈ A,
(A, c̄) has a Πα Scott sentence.

2. A has a d−Σα Scott sentence if and only if for some c̄ ∈ A,
(A, c̄) has a Πα Scott sentence and the automorphism orbit
of c̄ is Σα-definable.

Theorem (Montalbán)

Let α a countable ordinal. The following are equivalent:

▸ A has a Σ0
α+2 Scott sentence.

▸ There are parameters over which every automorphism orbit in
A is Σ0

α-definable.

▸ A is relatively (boldface) ∆0
α-categorical
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A computable structure is a structure with domain ω all of whose
relations and functions are uniformly computable.

A computable Lω1ω formula is one in which all of the infinitary
conjunctions and disjunctions are effective.

The ordinal ωCK
1 is the least ordinal which is not computable.

(Given x ∈ 2ω, ωx
1 is the least ordinal which is not x-computable.)

Every computable Lω1ω formula is Σα for some α < ωCK
1 .



Nadel analysed the Scott sentences of computable structures.

Theorem (Nadel 1974)

▸ Every computable structure has a ΠωCK
1 +2 Scott sentence.

▸ A computable structure has a computable Scott sentence if
and only if it has Scott sentence complexity strictly less than
ΠωCK

1
.

We say that a structure has high Scott sentence complexity / high
Scott rank if it has Scott sentence complexity ΠωCK

1
or higher /

Scott rank ωCK
1 or higher.

A structure has low Scott sentence complexity if and only if it has
a computable Scott sentence.



Until recently we thought of structures of high Scott rank as being
divided into two possible ranks: ωCK

1 and ωCK
1 + 1.

Now, there are five possible Scott sentence complexities for a
computable structure of high Scott sentence complexity.

ΣωCK
1

%%

ΣωCK
1 +1

''

d-ΣωCK
1

88

&&

d-ΣωCK
1 +1

''

ΠωCK
1

99

ΠωCK
1 +1

77

ΠωCK
1 +2

Scott rank ωCK
1 : ΠωCK

1
, ΠωCK

1
+ 1

Scott rank ωCK
1 + 1 : ΣωCK

1 +1, d-ΣωCK
1 +1, ΠωCK

1 +2



For a computable structure, having a Scott sentence of the form
on the left is equivalent to the condition on the right:

ΠωCK
1

: computable infinitary theory is ℵ0-categorical.

ΠωCK
1
+ 1 : each automorphism orbit is definable by a computable

formula.

ΣωCK
1 +1 : after naming constants, computable infinitary

theory is ℵ0-categorical.

d-ΣωCK
1 +1 : each automorphism orbit is definable by a computable

formula over parameters which are ΣωCK
1 +1-definable.

ΠωCK
1 +2 : always.



The first structure of high Scott sentence complexity was
constructed by Harrison.

Theorem (Harrison)

There is a computable order of order type ωCK
1 ⋅ (1 +Q). This has

Scott sentence complexity ΠωCK
1 +2.

The Harrison linear order is natural: There is a computable
operator x ↦ Hx such that Hx is a linear order of order type
ωx

1(1 +Q).



In a sense, all natural structure of high Scott sentence complexity
have Scott sentence complexity ΠωCK

1 +2.

Theorem (Becker, Chan-HT-Marks)

If x ↦ Ax is a Borel operator such that

ωx
1 = ωy

1 Ô⇒Ax ≅ Ay

then for some x, Ax has Scott sentence complexity Πωx
1+2.



The second type of structure of high Scott sentence complexity
was constructed by Makkai, Knight, and Millar.

Theorem (Makkai, Knight-Millar)

There is a computable structure of Scott sentence complexity
ΠωCK

1
.

The computable infinitary theory of such a structure is
ℵ0-categorical.



Millar and Sacks asked whether there is a computable structure of
Scott rank ωCK

1 whose computable infinitary theory is not
ℵ0-categorical. (Millar and Sacks had produced such a structure
which was not computable, but which had ωA1 = ωCK

1 .)

This is exactly the same as asking for a computable structure of
Scott sentence complexity ΠωCK

1 +1.

Theorem (HT-Igusa-Knight)

There is a computable structure of Scott sentence complexity
ΠωCK

1 +1.



Another open question was whether there is a computable
structure of Scott rank ωCK

1 + 1 which has Scott rank ωCK
1 after

naming constants.

It turned out that this is the same as asking for a computable
structure of Scott sentence complexity ΣωCK

1 +1 or d-ΣωCK
1 +1.

Theorem (Alvir-Greenberg-HT-Turetsky)

There are computable structures of Scott sentence complexity
ΣωCK

1 +1 and d-ΣωCK
1 +1.



The possible Scott complexities were:

ΣωCK
1

%%

ΣωCK
1 +1

''

d-ΣωCK
1

88

&&

d-ΣωCK
1 +1

''

ΠωCK
1

99

ΠωCK
1 +1

77

ΠωCK
1 +2

We have examples of all of these!



There are some other kinds of examples of structure of high Scott
sentence complexity.

Theorem (HT)

There is a computable structure A of high Scott sentence
complexity which is not computably approximable. (There is a Π2

sentence ϕ true of A such that every model of ϕ has high Scott
sentence complexity.)

Theorem (Turetsky)

There is a computably categorical structure of high Scott sentence
complexity.

These are properties none of the other examples had.



Outline

1. Scott sentence complexity

2. Computable structures of high Scott sentence complexity

3. Finitely generated structures and other algebraic structures



Recall that a structure is finitely generated if there is a finite tuple
ā of elements such that every element is the image of ā under
some composition of functions.

Theorem (Knight-Saraph)

Every finitely generated structure has a Σ3 Scott sentence.

Often there is a simpler Scott sentence; we have already seen the
example of the group Z, which has a d-Σ2 Scott sentence.



It seemed like most finitely generated groups have a d-Σ2 Scott
sentence.

Theorem (Knight-Saraph, CHKLMMMQW, Ho)

The following groups all have d-Σ2 Scott sentences:

▸ abelian groups,

▸ free groups,

▸ nilpotent groups,

▸ polycyclic groups,

▸ lamplighter groups,

▸ Baumslag-Solitar groups BS(1,n).

Knight asked: Is this always the case?



Theorem (A. Miller, HT-Ho, Alvir-Knight-McCoy)

Let A be a finitely generated structure. The following are
equivalent:

▸ A has a Π3 Scott sentence.

▸ A has a d-Σ2 Scott sentence.

▸ A is the only model of its Σ2 theory.

▸ some generating tuple of A is defined by a Π1 formula.

▸ every generating tuple of A is defined by a Π1 formula.

▸ A does not contain a copy of itself as a proper Σ1-elementary
substructure.



Theorem (HT-Ho)

There is a finitely generated group G which does not have a d-Σ2

Scott sentence.

Open Question

Does every finitely presented group have a d-Σ2 Scott sentence?

Theorem (HT)

A random finitely presented group has a d-Σ2 Scott sentence.

Theorem (HT)

Every finitely generated commutative ring has a d-Σ2 Scott
sentence.



Simple classes; every structure has a d-Σ2 Scott sentence:

▸ abelian groups, (Knight-Saraph)

▸ free groups, (CHKLMMMQW)

▸ torsion-free hyperbolic groups, (HT)

▸ vector spaces, (Folklore)

▸ fields, (HT-Ho)

▸ commutative rings, (HT)

▸ modules over Noetherian rings. (HT)

Complicated classes; there is a structure with no d-Σ2 Scott
sentence:

▸ groups, (HT-Ho)

▸ rings, (HT-Ho)

▸ modules. (HT)



The Nielson transformations give us a very good understanding of
bases for free groups.

Theorem (CHKLMMMQW)

The free group on countably many generators has a Π4 Scott
sentence.

We do not have such an understanding for pure transcendental
fields.

Open Question

What is the Scott sentence complexity of the field Q(x1, x2, . . .)?



Thanks!


