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Fraı̈ssé-Hrushovski Limits

Definition
Let K be a class of finite (finitely generated) structures. Suppose that
there is a relation ≤∗ between structures in K. We say that A is closed
in B if A ≤∗ B. (e.g. A ≤∗ B if A is a substructure of B.)
A countable L-structure M is called a Fraı̈ssé Limit
(or a generic structure) of (K,≤∗) if

A ⊆fin M ⇒ there is B such that A ⊆ B ⊆fin M and B ≤∗ M;
A ⊂fin M ⇒ A ∈ K;
for any A, B in K with A ≤∗ B and A ≤∗ M,

A

B

M
⟳≤

∗

≤∗

≤ ∗
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A Fact about the Fraı̈ssé Limit

Fact
(K,≤∗) has a Fraı̈ssé limit if and only if (K,≤∗) has HP (the hereditary
property), JEP (the joint embedding property), and AP (the
amalgamation property).

We omit the difinitions.

Fact
Let M be a Fraı̈ssé limit of (K,≤∗).
(1) M is unique up to isomorphisms.
(2) Suppose A ≤∗ M and B ≤∗ M and σ0 : A → B is an isomorphism
where A, B are finite. Then σ0 can be extended to an automorphism of
M.
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Predimension Function

We want to define a new closedness relation between graphs.
Let A be a graph. Put

δα(A) = |A| − αe(A)

where α is a real number with 0 < α < 1,
|A| is the number of the vertices of A, and
e(A) is the number of the edges of A.

a1 a2

b1 b2 For this graph,
δ2/3 = 4 − 3 × (2/3) = 2, and
δ5/8 = 4 − 3 × (5/8) = 2 + (1/8).

Kikyo (Kobe) On Automorphism Groups August 16, 2019 5 / 24



Closed Substructures

Suppose A ⊆fin B (induced subgraph).
A ≤α B if

A ⊆ X ⊆fin B ⇒ δα(A) ≤ δα(X ).

A <α B if
A ⊊ X ⊆fin B ⇒ δα(A) < δα(X ).

In the rest of this talk, A is closed in B if A <α B.

Put
Kα = {A : finite | ∅ <α A}.

We often omit subscript α.

a1 a2

b1 b2 Suppose α = 5/8.
δ5/8 = 4 − 3 × (5/8) = 2 + (1/8).
a1a2 < a1a2b1b2
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Closure and Dimension

Let M be a Fraı̈ssé limit of an amalgamation class (K, <).
For a finite A ⊆ M, there is a smallest B satisfying A ⊆ B < M, called a
closure of A, written cl(A).
For a finite A ⊆ M, put d(A) = δ(cl(A)).
Put d(A/B) = d(AB)− d(B).
B ⌣A C iff d(B/AC) = d(B/A).
(Assume A ⊆ C) b ⊥A C iff b ⌣A C and cl(bC) = cl(bA) ∪ C.

a1 a2

b1 b2 Suppose α = 5/8.
Suppose this graph is closed in M.
cl(b1a1a2) = b1b2a1a2.
d(b1/a1a2) = 1/8.
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Class Kf

Let f : R → R be a log-like function.
e.g. 1

2 log3(x + 1), 1
2 log2(x + 2)− 1

Kf = {A : finite | B ⊆ A ⇒ δ(B) ≥ f (|B|)}

x

y
y = x

y = f (x)
(|B|, δ(B))
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Facts on Kf

Fact
Assume that (Kf , <) has the free amalgamation property.
i.e. If A,B,C ∈ Kf with A < B and A < C then B ⊗A C ∈ Kf . Here,
B ⊗A C is a graph such that V (B ⊗A C) = V (B) ∪ V (C) with
V (B) ∩ V (C) = V (A), and E(B ⊗A C) = E(B) ∪ E(C).
A Fraı̈ssé limit M of (Kf , <) exists in this case.
If f is unbounded, Th(M) is ℵ0-categorical.

Suppose α = 5/8.

a1 a2

b1 b2

a1a2 < a1a2b1b2

a1

a2

An amalgam of copies over a1a2
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Basic Orbits

(The following notions are due to Evans, Ghadernezhad, Tent.)
Let M be a Fraı̈ssé limit of Kf .
Let A ⊆ M be finite and b ∈ M (a single element). We say that b is
basic over A if b ̸∈ A and whenever A ⊆ C < M and d(b/C) < d(b/A)
then b ∈ C. In this case, the orbit of b over A is called a basic orbit
over A.

If δ(b/A) is the smallest possible positive dimension, then b is basic
over A.
If b is basic over A, tp(b/A) acts like a regular type.

a1 a2

b1 b2 Let α = 5/8. We have 2/3 − 5/8 = 1/8.
d(b1/a1a2) = 1/8.
b1 is basic over a1a2.
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Theorem by Evans, Ghadernezhad, Tent

Theorem (Evans, Ghadernezhad, Tent)
Let α be a rational number with 0 < α < 1.
Suppose Kf has the FAP with respect to <α and cl(∅) = ∅.
Let M be the Fraı̈ssé limit of (Kf , <α).
If M = cl(A,D) for some basic orbit D over A ⊂ M
then Aut(M) is a simple group.

Previous to their work, there are works by Truss, Lascar, Macpherson,
Tent, and Ziegler. The proof uses some facts from the descriptive set
theory about Polish groups.
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Theorem by Evans, Ghadernezhad, Tent

Theorem (Evans, Ghadernezhad, Tent)
Assume that
0 < α = c/d < 1 with coprime positive integers c and d ,
f (0) = 0, f (1) = 1,
f ′+(x) ≤ 1/(d · x) where d is the denominator of α, and
f ′+(x) is non-increasing.
Let M be the Fraı̈ssé limit of (Kf , <α).
If α = 1 with R a ternary relation, then M = acl(A,D) for some basic
orbit D over some A of M.
If α = 1/2 with R a binary relation, then M = acl(A,D) for some basic
orbit D over some A of M.
Therefore, Aut(M) is a simple group in these cases.

They conjectured that Aut(M) is a simple group if α is any rational
number with 0 < α < 1.
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Hrushovski’s Boundary Function

Let α be a positive real number. We define xn, en, kn, dn for integers
n ≥ 1 by induction as follows:
Let x0 = 0, e0 = 0, x1 = 2 and e1 = 1.
Assume that xn and en are defined.
Let rn be the smallest rational number r such that r = k/d > α for
some positive integers k , d with d ≤ en.
Let kn and dn be coprime positive integers with kn/dn = rn.
Finally, let xn+1 = xn + kn, and en+1 = en + dn.
Let f be a continuous function from R+ to R+ satifying the following:

f (xn) = xn − αen for each n ≥ 0.
f is linear on [xn, xn+1] for each n ≥ 0.

We call such f a Hrushovski’s boundary function associated to α.

(xn,en) has the following meaning:
en is the maximum number of edges allowed among xn vertices.
x1 = 2 and e1 = 1 mean that only 1 edge is allowed on 2 vertices.
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Hrushovski’s Boundary Functions

Hrushvski’s boundary functions are piecewise linear functions.

x

y
y = x

y = f (x)

xn

xn

xn − αen

xn−1

αen
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Example with α = 5/8

n 1 2 3 4 5 6 7 8 9
xn 2 3 4 6 8 10 17 29 51
en 1 2 3 6 9 12 23 42 77
kn 1 1 2 2 2 7 12 22 47
dn 1 1 3 3 3 11 19 35 75

For n ≥ 3, kn = 2 + 5ℓ and dn = 3 + 8ℓ for some ℓ.

Proposition
Suppose 0 < α = c/d < 1 with coprime positive integers c and d .
Let a, b be positive integers with
ad − bc = 1, a ≤ c, and b < d .
Eventually, en, kn, and dn satisfy the following:
Given en, let ℓ be the largest integer ℓ′ with b + ℓ′d ≤ en.
Then kn = a + ℓc and dn = b + ℓd .
In particular, dkn − cdn = 1.
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Some Facts

Let f be a Hrushovski’s boundary function.

(Kf , <) has the FAP, and it has the Fraı̈ssé limit.
The right derivative f ′+(x) tends to 0 as x → ∞.

If α is rational, then f is unbounded. In this case, the Fraı̈ssé limit of Kf
is supersimple.

If α is irrational, f can be unbounded or bounded. In this case, the
Fraı̈ssé limit of Kf is strictly stable. f is bounded for “usual” irrationals
like 1/

√
2. There are irrational numbers α such that f is unbounded by

Baire Category Theorem.
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Main Theorem

Theorem (K.)
Suppose α is rational with 0 < α < 1. Let f be the Hrushovski’s
boundary function with respect to α. Let M be the Fraı̈ssé limit of
(Kf , <).
Then there is a basic orbit D over some A ⊂ M such that M = cl(A,D).
Therefore, Aut(M) is a simple group.

We explain a sketch of the proof in the case α = 5/8.
The following graph is embeded into M as a closed set.
Since d(b1/a1a2) = 1/8, b1 is basic over a1a2.

a1 a2

b1 b2
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Main Theorem

By the FAP, the following graph belongs to Kf :

a1

a2

c1

a1

a2

D1

This graph belongs to Kf also,
and d(c1/D1) = 0 in this graph.
Embedded in M as a closed set,
D1 is a subset of the basic orbit
over A, and
c1 ∈ cl(D1).
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Main Theorem

By repeating the similar argument, we can make “the tower” bigger.
Eventually, we get the following claim:

Claim 1. Let D be the orbit of b1 over a1a2. Then there is
c ∈ cl(a1a2,D) such that c ⊥ a1a2.

Therefore, {y ∈ M | y ⊥ a1a2} ⊆ cl(a1a2,D).
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Main Theorem

Claim 2. x ∈ cl(a1a2,D) for any x ∈ M.

Let x ∈ M and X = cl(a1a2x).
Make a free amalgam with the following graph over x and embed it into
M over X as a closed set:

x

For each (isomorphic image) z of a leaf of this graph, easy calculation
shows that a1a2z < M. Hence, z ⊥ a1a2.
Therefore, z ∈ cl(a1a2,D) by Claim 1.
Also x ∈ cl({z | z is a leaf above}), thus x ∈ cl(a1a2,D).
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Main Theorem

We can do similar arguments when 1/2 < α < 2/3, or
n − 1/n < α < n/n + 1 for some intger n ≥ 1.
If α = n/n + 1, we can argue similarly, except the case α = 1/2.
When α = 1/2, the proof by Evans, Ghadernezhad, Tent works (They
made some extra assumption on f which fails for Hrushovski’s f , but it
should work).
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Corollary

Corollary (K.)
Assume that
0 < α = c/d < 1 with coprime positive integers c and d ,
f (0) = 0, f (1) = 1,
f ′+(x) ≤ 1/(d · x) where d is the denominator of α, and
f ′+(x) is non-increasing.
Let M be the Fraı̈ssé limit of (Kf , <α).
Then Aut(M) is a simple group.

Let fα be the Hrushovski’s boundary function associated to α. With the
assumption above, we have f (x) ≤ fα(x) for x ≥ 2.
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Further Questions and Remarks

Let Mα be the Hrushovski’s pseudoplane associated to α.
• Th(Mα) is model complete if α is a rational number with 0 < α < 1.

Suppose α is an irrational number.
• Is Aut(Mα) a simple group?
• If Hrushovski’s boundary function associated to α is bounded, then
Th(Mα) is not model complete.
• If Hrushovski’s boundary function associated to α is unbounded, is
Th(Mα) model complete? (My conjecture is yes.)
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