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Hilbert spaces over R
We identify a Hilbert space over R with a many-sorted metric
structure

({Bn}n∈ω, 0, {Imn}m<n, {λr}r∈R,+,−, 〈〉) , where

Bn is the ball of elements of norm ≤ n,

Imn : Bm → Bn is the inclusion map,

λr : Bm → Bkm is scalar multiplication by r , with k the unique
integer satisfying k ≥ 1 and k − 1 ≤ |r | < k ;

+,− : Bn ×Bn → B2n are vector addition and subtraction and

〈〉 : Bn × Bn → [−n2, n2] is the binary predicate of the inner
product.

The metric on each sort is given by d(x , y) =
√
〈x − y , x − y〉.

Every operation uniformly continuous; the continuity moduli are
standard.
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Hilbert spaces over C
This approach can be extended to complex Hilbert spaces.

({Bn}n∈ω, 0, {Imn}m<n, {λc}c∈C,+,−, 〈〉Re , 〈〉Im),

We only extend the family λr : Bm → Bkm, r ∈ R, to a family
λc : Bm → Bkm, c ∈ C, of scalar products by c ∈ C, with k
the unique integer satisfying k ≥ 1 and k − 1 ≤ |c | < k .

The inner product is represented by two predicates: Re- and
Im-parts of the inner product.

Iinfinite dimensional Hilbert spaces are axiomatizable as follows:

infx1,...,xnmax1≤i<j≤n(|〈xi , xj〉 − δi ,j |) = 0,

δi ,j ∈ {0, 1} with δi ,j = 1↔ i = j ,

It is known that this class is κ-categorical for all infinite κ, and the
corresponding continuous theory admits elimination of quantifiers.
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Unitary representations

To study unitary representations of finitely generated groups we fix
a natural number t and consider the class of dynamical Hilbert
spaces in the extended signature

({Bn}n∈ω, 0, {Imn}m<n, {λc}c∈Q[i ],+,−, 〈〉Re , 〈〉Im,U1, ...,Ut),

where Uj , 1 ≤ j ≤ t, are symbols of unitary operators of H.

We may assume that all Uj are defined only on B1.

We add to each Ui the symbol U ′i for the operator U−1
i .

Then we also add the axioms

supv∈B1
d(U ′iUi (v), v) ≤ 0 and supv∈B1

d(UiU
′
i (v), v) ≤ 0.
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Pseudocompactness. Problem.

Is every unitary representation of a t-generated group
pseudocompact as a structure of the form

({Bn}n∈ω, 0, {Imn}m<n, {λc}c∈Q[i ],+,−, 〈〉Re , 〈〉Im,U1, ...,Ut)?

i.e. is it elementarily equivalent to a metric ultraproduct of
structures of this form which correspond to finite dimensional
representations?
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Ultraproducts

The metric in the ultraproduct
∏

I (Xi , di )/D is defined by

d((xi )I , (x
′
i )I ) = limi→Ddi (xi , x

′
i ),

i.e. by the rule that the distance between (xi )I and (x ′i )I is in the
interval (ε1, ε2) if and only if the set {i : di (xi , x

′
i ) ∈ (ε1, ε2)}

belongs to the ultrafilter D.∏
I (Xi , di )/D consists of classes of the relation d((xi )I , (yi )I ) = 0.
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Property MF

Let K be a class of metric groups with metrics bounded by
some number s. We say that a group G is K-approximable if
it embeds into a metric ultraproduct of groups from K.

Let K consist of unitary groups U(n) together with the metric
induced by the operator norm ‖ T ‖op= sup‖v‖=1 ‖ Tv ‖.
We put d(T ,Q) =‖ T − Q ‖op.

Groups approximable by these metric groups are called MF
(matricial field).

It is an open question if there are non-MF groups.

A. Tikuisis, S. White and W. Winter proved that amenable
groups are MF.

A. Korchagin shows that in many respects property MF is
similar to soficity and hyperlinearity.
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Principal observation

Theorem

Let G = 〈g1, ..., gn〉 be a finitely generated group. The group G is
MF if and only if there is a dynamical Hilbert space in the signature

({Bl}l∈ω, 0, {Ikl}k<l , {λc}c∈Q[i ],+,−, 〈〉Re , 〈〉Im,U1,U2, . . . ,Un)

which is an ultraproduct of finite dimensional dynamical Hilbert
spaces of the same signature and the group 〈U1, . . . ,Un〉 is
isomorphic to G under the map taking Ui to gi , 1 ≤ i ≤ n.

Corollary. If every unitary representation of a finitely generated
group is pseudocompact, then every group satisfies property MF.
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Other observations

Any dynamical Hilbert space corresponding to a
representation of a cyclic group is pseudocompact.
(Spectral decomposition theorem and previous results of
Henson, Argoty and Berenstein.)

Any unitary representation of a finitely generated group which
is existentially closed as a dynamical Hilbert space is
pseudocompact.
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Regular representations

The left regular representation of G is obtained by the action of
G on l2(G ) defined by the unitary operators Ug : f (h)→ f (g−1h).

Theorem

Let G be a finitely generated LEF group. Then the dynamical
G-space l2(G ) is pseudo finite dimensional.

A group H is called LEF if for every finite F ⊆ H there is a
finite group S ⊇ F so that ∀a, b, c ∈ F H |= a · b = c if and
only if S |= a · b = c .
Residually finite groups are LEF.
Corollary. Any finitely generated LEF group is MF (Carrion,
Dadarlat, Eckhardt, 2013).
This together with some results of Berenstein imply that when
G is a f.g. amenable LEF group, then all existentially closed
unitary G -representations are pseudocompact.
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Universal statements

Theorem

Any dynamical Hilbert space corresponding to a representation of a
finitely generated group is embeddable into a metric ultraproduct
of finite dimensional unitary representations.

Corollary. Any statement of the form

supx1
. . . supxnφ(x̄) ≤ q , where φ is quantifier free and q ∈ Q,

is satisfied in a representation of a finitely generated group if and
only if it is satisfied in a finite dimensional representation of a
finitely generated group.
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