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Let A <B and # a class. Say that b € B is dominated by A w.r.t.

A ifforall Ce #, and all h,H :B —C
h|A = h,‘A implies h(b) = h/(b)

The dominion of A in B w.r.t. .7, domEgA, is the set of all such b.

Example
Let Y1 be the variety of bounded distributive lattices.

Observe that b € dom_‘g}OIA.
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Dominions in Y1

Let & be the class of boolean algebras. Given A € 7, there is a
unique A € £ such that:

> A< A}_%l

> A generates A.

3/9



Dominions in Y1

Let & be the class of boolean algebras. Given A € 7, there is a
unique A € £ such that:

> A<A|, )
> A generates A.

Theorem (Wasserman 2001)

Let A< B € Py, andlet be B. T.fa.e.:
> be domB%lA

> b is in the subalgebra of B generated by A.
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Discriminator varieties

The (quaternary) discriminator on a set A is the function
da: A* — A defined by

z ifx=y

dA(X7y727W)_{W |fX#y

A variety ¥ is a discriminator variety if there are a class .# and a
term t(x,y,z,w) such that

> v =HSP(#)
> tA—=d, foreach A e .
Examples:

» Boolean algebras,
> Varieties of rings generated by finitely many finite fields,
» Monadic algebras.
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Filtral quasivarieties
A quasivariety 2 is filtral if
» 2 is congruence distributive
> 2 is semisimple

> s is a universal class.
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Filtral quasivarieties
A quasivariety 2 is filtral if
> 2 is congruence distributive
> 2 is semisimple
> s is a universal class.
Examples:
P Discriminator varieties,
» Distributive lattices,
» De Morgan algebras.

Theorem (C. & Vaggione 2012)

A quasivariety 2 is filtral iff there are a class ./ and a conjunction
of atomic formulas a(x,y,z,w,u) such that

> 2 =ISPPy(.4),

» For each A € .# we have
AFE a(x,y,z,w,u) < da(x,y,z,w) = u.
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Existentially closed structures and the AP

Let .# be a class of structures.
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> A is existentially closed (ec) in .# if for all B € .# with
A < B, every existential formula ¢@(x), and all 3 € A we have

BE ¢(3) = AF ¢(3).

Let Aee:={A:Aisecin Z}.
» _/ has the amalgamation property (AP) if (see blackboard |)
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Dominions are generated by definable functions

Let 2 be a filtral quasivariety and . its class of simple members.

Theorem
Suppose A4 has the AP and M. is axiomatizable. Let A< B e 2
and b € B, the following are equivalent:

> bc domgA
» There are a conjunction of equations 6(x,y) and 3 € A such
that:
> BES(3,b)
> M EVXIly §(X,y).
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The saturated expansion

Let
A :={8(Xx,y): M FVxIyS(X,y)}.

For each d(x1,...,xn,y) € A let fs be a new n-ary function symbol
and let
Lp =Ly U{fs: 08 € A},
Define
> [:={Vxd(x,fs(x)): 6 € A} U{axioms for 2},
> 22 :=Mod(I).
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Caracterization of dominions in filtral quasivarieties

Theorem
> 22 s a discriminator variety.

» Dominions are trivial in 22.

> For every A € 2 there is a unique A € 22 such that A < A 2

and A generates A.
> domgA = (A\BNB forall A<B e 2.
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Thank youl




