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Jan Bydžovský Technical University of Vienna
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Marta Vlasáková Czech Academy of Sciences, Institute of Philosophy

Ilya Vlasov Kazan (Volga region) Federal University

Longge Wang University of St. Andrews

Bartosz Wcisło University of Warsaw

Andreas Weiermann Ghent University, Institute for Analysis, Logic and Discrete Mathe-

matics

Jin Wei University of California, Irvine

Robert Woodrow University of Calgary

Veta Yun Sobolev Institute of Mathematics

Damir Zainetdinov Kazan Federal University

Pedro Zambrano Universidad Nacional de Colombia, Bogota

Martin Ziegler KAIST School of Computing

Maxim Zubkov KFU

Andy Zucker Université Paris Diderot



Participants 27



28 Participants



1 Plenary talks

29



30 Plenary talks

Samson Abramsky

Relating Structure and Power: a junction between cat-
egorical semantics, model theory and descriptive com-
plexity

There is a remarkable divide in the ϐield of logic in Computer Science, between

two distinct strands: one focussing on semantics and compositionality (“Struc-

ture”), the other on expressiveness and complexity (“Power”). It is remarkable

because these two fundamental aspects are studied using almost disjoint techni-

cal languages and methods, by almost disjoint research communities. We believe

that bridging this divide is a major issue in Computer Science, and may hold the

key to fundamental advances in the ϐield.

In this talk, we describe a novel approach to relating categorical semantics, which

exempliϐies the ϐirst strand, to ϐinite model theory, which exempliϐies the second.

It is based on [1, 2], and ongoing joint work with Nihil Shah, Tom Paine and Anuj

Dawar.
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Zoé Chatzidakis

Notions of difference closures of difference ϐields

It is well known that a differential ϐield 𝐾 of characteristic 0 is contained in

a differential ϐield which is differentially closed and has the property that it

𝐾-embeds in every differentially closed ϐield containing 𝐾. Such a ϐield is called a

differential closure of 𝐾, and it is unique up to 𝐾-isomorphism. In other words,

prime models exist and are unique. The proof uses the fact that the theory of

differentially closed ϐields of characteristic 0 is totally transcendental.

One can ask the same question about difference ϐields: do they have a difference

closure, and is it unique? The immediate answer to both these questions is no, for

trivial reasons: in most cases, there are continuummany ways of extending an

automorphism of a ϐield to its algebraic closure. Therefore a natural requirement

is to impose that the ϐield 𝐾 be algebraically closed. Similarly, if the subϐield of 𝐾

ϐixed by the automorphism is not pseudo-ϐinite, then there are continuummany

ways of extending it to a pseudo-ϐinite ϐield, so one needs to add the hypothesis

that the ϐixed subϐield of 𝐾 is pseudo-ϐinite.

In this talk I will show by an example that even these two conditions do not

sufϐice.

There are two (and more) natural strengthenings of the notion of difference

closure, andwe show that in characteristic0, these notions do admit uniqueprime

models over any algebraically closed difference ϐield 𝐾, provided the subϐield of

𝐾 ϐixed by the automorphism is large enough.

In model-theoretic terms, this corresponds to the existence and uniqueness of

a-prime or 𝜅-prime models.

In characteristic 𝑝 > 0, no such result can hold.
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Osvaldo Guzman

The ultraϐilter and almostdisjointness numbers

The cardinal invariants of the continuum are certain uncountable cardinals that

are less or equal to the cardinality of the real numbers. This relation and nonrela-

tion between this cardinals has been deeply studied by set theorists. In this talk,

we will focus on the following two invariants: The ultraϔilter number 𝔲,which

is deϐined as the smallest size of a base of an ultraϐilter, and the almost disjoint-

ness number 𝔞, which is the smallest size of aMAD family. The consistency of

the inequality 𝔞 < 𝔲 is well known and easy to prove. The consistency of the

inequality 𝔲 < 𝔞 is much harder to obtain. It was Shelah who proved that, under

the assumption that there is a measurable cardinal, there is model of𝜔ଵ < 𝔲 < 𝔞.

In spite of the beauty of the result, the following questions remained open:

(Shelah) Does CON(ZFC) implies CON(ZFC + 𝔲 < 𝔞)?

(Brendle) Is it consistent that 𝜔ଵ = 𝔲 < 𝔞?

In this talk, we are going to see how to provide a positive answer to both questions.

This is joint work with Damjan Kalajdzievski. No previous knowledge of cardinal

invariants of the continuum is needed for the talk.
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Matthew Harrison-Trainor

Describing countable structures

Given a countable structure, how do we measure its complexity? One way to

do this is by measuring the complexity of describing that structure. Dana Scott

proved that for each countable structure𝒜 there is a sentence of inϐinitary logic

that is true of𝒜 and not true of any other countable structure. We can think of

such a sentence as a description of the structure, and call any such sentence a Scott

sentence. The Scott complexity of a structure is the complexity of the simplest

Scott sentence for that structure. The Scott complexity of a structure is tightly

related to other notions of complexity, such as the complexity of understanding

automorphisms of the structure, or of ϐinding isomorphisms between different

copies of the structure. This talk will begin with a general overview of the area

followed by a number of recent results on ϐinitely generated structures and on

structures of high Scott rank.
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Ulrich Kohlenbach

Local proof-theoretic foundations, proof-theoretic
tameness and proof mining

Recently, John Baldwin pointed to a ‘paradigm shift in model theory’ stressing

that while early 20th century logic focused on the formalization of all of mathe-

matics, model theory increasingly studied speciϐic areas of mathematics (local

formalizations) with an emphasis on tame structures ([1]). We will argue that

also the successful use of proof-theoretic methods in core mathematics (‘proof

mining’, [2]) in recent decades was made possible by developing logical metathe-

orems tailored for applications to particular classes of theorems and proofs in

speciϐic areas of mathematics. In analysis, these classes of theorems (e.g. conver-

gence statements), however, do involve arithmetic (together with analytical and

geometric structures) and so are not tame in the model-theoretic sense but could

in principle display Gödelian or huge growth phenomena. It is an empirical fact,

though, that with a few notable exceptions (which still are primitive recursive in

the sense of Gödel’s 𝑇), proofs in existing ordinary analysis are largely tame in

the sense of allowing for the extraction of bounds of rather low complexity. To

determine the amount of ‘proof-theoretic tameness’ in a given proof requires a

proof-theoretic analysis in each case. We will discuss two recent applications of

proof mining, one of which displays a highly tame (polynomial) behavior ([3])

whereas the other one as it stands uses primitive recursion of type-1 level ([4]).
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Jan Krajíček

Model theory and proof complexity

Mathematical logic and computational complexity theory have many topics in

common. In most cases the links between the two ϐields are fostered by ϐinite

combinatorics, manifesting either via proof theory or via ϐinite model theory.

There are, however, also topics in complexity theory where inϐinitary methods of

logic shed a new light on old problems. I will discuss, in particular, how non-ϐinite

model theory relates to proof complexity. The relevant model theoretical prob-

lems involve constructions of models of bounded arithmetic and of expanded

extensions of pseudo-ϐinite structures. I will describe forcing with random vari-

ables aimed at tackling these problems, and give some examples of results that

can be obtained in this way.
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Hannes Leitgeb

Ramsiϐication and Semantic Indeterminacy

Since the publication of Ramsey’s (1929) “Theories”, the Ramsiϔication of sci-

entiϐic theories has become a major tool in scientiϐic theory interpretation and

reconstruction. In this talk, Iwill argue that theRamsiϐication of classical Tarskian

semantics can also help us overcome problems that result from the vagueness of

ordinary terms in natural language or from the theoreticity and open-endedness

of technical terms in mathematical and scientiϐic language. The resulting “Ram-

sey semantics” saves all of classical logic and almost all of classical semantics,

while embracing semantic indeterminacy without going down an epistemicist

or supervaluationist road. In application to the semantics of the language(s)

of mathematics, it goes some way towards a reconciliation between classical

mathematics and intuitionistic concerns.



Plenary talks 37

Dilip Raghavan

Higher cardinal invariants.

There has been a recent resurgence of research into cardinal invariants at regular

uncountable cardinals. This recent work has revealed many differences between

cardinal invariants at 𝜔 and their analogues at uncountable cardinals. One un-

expected conclusion is that there seem to be more ZFC inequalities provable at

uncountable cardinals than at 𝜔. The study of cardinal invariants at uncountable

cardinals has also led to the development of novel forcing techniques, mostly

notably the method of forcing with Boolean ultrapowers, which was introduced

in [4] to investigate the higher analogue of the almost disjointness number.

I will present a survey of some of this recent work, restricting my attention

to six combinatorial cardinal characteristics at regular uncountable cardinals.

Some ZFC results, such as the ones in [1] and [2], as well as some consistency

results, such as the ones in [3], will be mentioned. Time permitting, I will expose

the method of Boolean ultrapowers as developed in [4] and sketch some of the

consistency results at regular uncountable cardinals that can be obtained using

this method.
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Michael Rathjen

Well-ordering principles in proof theory and
reverse mathematics

Several results about the equivalence of familiar theories of reverse mathematics

with certain well-ordering principles have been proved (Friedman, Marcone,

Montalban et al.) by recursion-theoretic and combinatorial methods and also by

proof theory (Afshari, Girard, R, Weiermann et al.), employing deduction search

trees and cut elimination theorems in inϐinitary logics with ordinal bounds.

One goal of the talks is to present a general methodology underlying these results

which in many cases allows one to establish an equivalence between two types of

statements. The ϐirst type is concernedwith the existence of𝜔-models of a theory

whereas the second type asserts that a certain (usually well-known) elementary

operation on orderings preserves the property of being well-ordered. These

operations are related to ordinal representation systems (ors) that play a central

role in proof theory. The question of naturality of ors has vexed logicians for a

long time. While ors have a low computational complexity, their “true” nature

evades characterization in those terms. One attempt has been to describe their

structural properties in category-theoretic terms (Aczel, Feferman, Girard et al.).

Some of these ideas will be discussed in the talks.

A second goal is to present rather recent developments (due to Arai, Freund,

R), especially work by Freund on higher order well-ordering principles and

comprehension.
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Vincenzo de Risi

Drawing Lines through Rivers and Cities.The Meaning
of Postulates from Euclid to Hilbert

The talk attempts to sketch a history of the development of the meaning of math-

ematical principles from Antiquity to the Modern Age. Euclid’s own conception

of principles (deϐinitions, postulates, common notions) was widely different

from ours, and it requires some exercise to understand what did it mean for him

to ground geometry on a set of principles. We will explore how Euclid’s own

views on the foundations of mathematics were interpreted and misinterpreted

in Late Antiquity, and how a new conception of principles arose in medieval

Scholasticism. Such interpretation of axioms and postulates, that stemmed in

the commentaries to Aristotle’s Analytics, was immensely inϐluent in the early

modern age, and was endorsed, with various degrees of variance, by authors

such as Clavius, Wallis, Leibniz or Euler. In the 18th Century, on the other hand,

a new conception of axiom began to rise in the works of Lambert and Bolzano.

This last development in the meaning of a mathematical principle paved the way

for some of the modern understandings of it, in the works of Frege, Hilbert and

others. The talk will also present a survey of the main axioms employed in the

modern age to ground elementary geometry, which greatly differed from Euclid’s

original principles and were later collected in the books of the foundations of

geometry by Peano, Pasch and Hilbert.



40 Plenary talks

Gil Sagi

Logic and natural language:
commitments and constraints

Most of the contemporary research in logic is carried out with respect to formal

languages. Logic, however, is said to be concernedwith correct reasoning, and it is

natural language that we usually reason in. Thus, in order to assess the validity of

arguments in natural language, it is useful to formalize them: to providematching

arguments in a formal language where logical properties become perspicuous.

It has been recognized in the literature that formalization is far from a trivial

process. One must discern the logical from the nonlogical in the sentence, a

process that requires theorizing that goes beyond the mere understanding of

the sentence formalized [1]. Moreover, according to some, “logical forms are

not to be discovered but rather established and ascribed to expressions within

processes of the reϐlective equilibrium” [2]. I concur. I argue that logical forms

are imposed, and that furthermore, they carry a normative force in the form of

commitments on behalf of the theorizer.

In previous work [3], I proposed a model-theoretic framework of “semantic

constraints”, where there is no strict distinction between logical and nonlogical

vocabulary. The form of sentences in a formal language is determined rather by

a set of constraints on models. In the present paper, I show how this framework

can also be used in the process of formalization, where the semantic constraints

are conceived of as commitments made with respect to the language.
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Thomas Scanlon

Over six decades of the model theory of valued ϐields

Inspired by Angus Macintyre’s lecture ”Twenty years of p-adic model theory” at

the Logic Colloquium ’84 in Manchester, I widen the scope

exploring the role that the theory of valued ϐields hasplayed (and continues to

play) in the internal development of model theory and in the applications of

model theory to other parts of mathematics.
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Rineke Verbrugge

Zero-one laws for provability logic and some of its sib-
lings

Glebskii and colleagues proved in the late 1960s that each formula of ϐirst-order

logic without constants and function symbols obeys a zero-one law. That is,

every such formula is either almost surely valid or almost surely not valid: As

the number of elements of ϐinite models increases, each formula holds either in

almost all or in almost no models of that size. As a consequence, many properties

of models, such as having an even number of elements, cannot be expressed

in the language of ϐirst-order logic without constants and function symbols. In

a 1994 paper, Halpern and Kapron proved similar zero-one laws for classes of

models corresponding to the modal logics K, T, S4, and S5.

In this presentation, we discuss zero-one laws for some modal logics that impose

structural restrictions on their models; all three logics that we are interested

in are sound and complete with respect to ϐinite partial orders, with different

extra restrictions per logic. We prove zero-one laws for provability logic and

its two siblings Grzegorczyk logic and weak Grzegorczyk logic, with respect to

model validity. Moreover, for all three logics, we axiomatize validity in almost all

relevant ϐinite models, leading to three different axiom systems. In the proofs,

we use a combinatorial result by Kleitman and Rothschild about the structure of

almost all ϐinite partial orders. We also discuss the questionwhether for the three

sibling logics, validity in almost all relevant ϐinite frames can be axiomatized as

well. Finally, we consider the complexity of deciding whether a given formula is

almost surely valid in the relevant ϐinite models.
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Martin Ziegler

Logic of Computing with Continuous Data:
Foundations of Numerical Software Engineering

Over 30 years after introducing the IEEE 754 standard, Numerics still gyrates

around ϐloating point numbers: from speciϐication (e.g. of e04bbc in the NAG

library) via analysis (unit-cost/realRAM/Blum-Shub-Smale model) and imple-

mentation to veriϐication. Yet their violation of Distributive Law, of Intermediate-

Value Theorem, and of Quantiϐier Elimination hampers rigorous approaches to

Numerical Software Engineering: Modern Calculus builds on real (rather than

rational) numbers for a reason!

We reconcile the convenient algebraic perspective on real computation (Bür-

gisser) with Computable Analysis (Grzegorczyk, Pour-El, Weihrauch) by develop-

ing Turing-complete semantics for operating on continuous structures (Poizat,

Zucker). This imperative counterpart to realPCF (Escardo) extends the powerful

formal tools of Software Engineering from the discrete to the continuous realm

with beneϐits to numerical practice.
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Yair Hayut

Stationary Reϐlection at the successor
of a singular cardinal

In the paper [2], the consistency of stationary reϐlection holds at all stationary

subset of ℵఠାଵ which concentrate on ordinals of uncountable coϐinality, was

obtained from the existence of a cardinal 𝜅 which is 𝜅ା-supercompact. Using

a similar method, Zeman showed in [5] that ¬�ℵఠ
is consistent relative to the

weaker assumption— a measurable subcompact cardinal. In both cases, Prikry

forcing is used in order to singularize a measurable cardinal that will become the

new ℵఠ. When trying to improve those results in order to obtain full stationary

reϐlection at ℵఠାଵ one needs to deal with the non-reϐlecting stationary sets which

are introduced by the Prikry forcing.

In this talk I will describe the main ideas behind the method which is used in

a joint work with Spencer Unger, [4]. In this work we obtain full stationary

reϐlection at ℵఠାଵ, starting from a large cardinal axiomweaker than the one from

[2]. This method uses the ideas of [1] and [3], and enables us to analyse the

properties of a Prikry type generic extensions by using internal analysis of some

iterated ultrapowers, as well as construct a specialized Prikry type forcing notion

with a controlled behaviour for our problem.
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Heike Mildenberger*, Saharon Shelah

Generalised Miller forcing may collapse cardinals

We show that it is independent whether club-𝜅-Miller forcing preserves 𝜅ାା.

With club guessing and other prediction principles we show that under 𝜅ழ఑ > 𝜅,

club-𝜅-Miller forcing collapses𝜅ழ఑ to𝜅. We investigate variants of𝜅-Miller forcing

and draw connections to the forcing ([𝜅]఑, ⊆).
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Daniel T. Soukup

Through the lense of uniformization

The main goal of this talk is to review recent applications of the uniformization

property of ladder systems on 𝜔ଵ. This notion played a critical role in S. Shelah’s

solution of theWhitehead problem; in the understanding of forcing axiomswhich

can be consistent with CH [2]; and in J. Moore’s work onminimal uncountable lin-

ear orders [1]. We shall focus on more recent results concerning edge colourings

of graphs with uncountable chromatic number (joint work with M. Dzamonja, T.

Inamdar and J. Steprans) and questions about minimal uncountable linear orders

[5, 6]. The latter topic leads to the analysis of uniformizations on Aronszajn trees

[3, 4] which we shall touch on brieϐly.
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Andy Zucker

Bernoulli disjointness

We consider the concept of disjointness for topological dynamical systems, intro-

duced by Furstenberg. We show that for every discrete group, everyminimal ϐlow

is disjoint from the Bernoulli shift. We apply this to give a negative answer to the

“Ellis problem” for all such groups. For countable groups, we show in addition that

there exists a continuum-sized family of mutually disjoint free minimal systems.

Using this, we can identify the underlying space of the universal minimal ϐlow of

every countable group, generalizing results of Balcar-Błaszczyk and Turek. In

the course of the proof, we also show that every countable ICC group admits a

free minimal proximal ϐlow, answering a question of Frisch, Tamuz, and Vahidi

Ferdowsi. This is joint work with Eli Glasner, Todor Tsankov, and BenjaminWeiss.
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Frode A. Bjørdal

Capture, Replacement, Speciϐication

LetW be Zermelo set theory Zminus speciϐication and choice. For 𝛼(𝑣, 𝑥, 𝑦) any

ϐirst order condition in the language of set theory on the indicated free variables,

legislate:

Axiom of Capture: ∀𝑣∃𝑤∀𝑥(𝑥 ∈ 𝑤 ↔ ∃𝑦(𝑦 ∈ 𝑣 ∧𝛼(𝑣, 𝑥, 𝑦) ∧ (∀𝑧)(𝛼(𝑣, 𝑧, 𝑦) →

𝑥 = 𝑧)))

Let ZF be Zermelo-Fraenkel set theory: We show ZF =W+ Axiom of Capture.

Capture avoids the cumbersome restriction to functional condition, and is justi-

ϐied by the idea that we should accept as many instances of naive comprehension

as possible. Versions of capture are of use in the context of the author’s alterna-

tive set theory £ as in [1] because they allow for more ϐlexibility in expressing

useful closure principles.
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Evgeny Gordon

On extension of Haar measure in 𝜎-compact groups

In the paper [1] the model of ZFC, where every set of reals, deϐinable by a se-

quence of ordinals is Lebesgue measurable was constructed under assumptions

of existence of an inaccessible cardinal. On the base of this model the model of

ZF+DC, in which every set of reals is Lebesgue measurable was presented. In

[2] it was proved without the assumption of existence of inaccessible cardinal

that the possibility to extend the Lebesgue measure to a non-regular 𝜎-additive

invariant measure deϐined on all sets of reals is consistent with ZF+DC. Later on

Shelah proved that the assumption of existence of inaccessible cardinal cannot

be removed from the Solovay’s result [3]. In the talk we present the following

theorem.

Theorem. Let 𝛼 be an arbitrary ordinal deϔinable in ZF. Denote 𝐵𝑎𝑠𝑒(𝑋, 𝛽) and

𝐸𝑥𝑡(𝑋, 𝛽) the statements

1. ”𝑋 is a 𝜎-compact group with the base of topology of cardinality 𝛽”;

2. ”In a𝜎-compact group𝑋 the left Haar measure can be extended to a left invari-

ant 𝜎-additive measure deϔined on all subsets of 𝑋 deϔinable by a 𝛽-sequence

of ordinals”.

respectively. Then the following proposition is consistent with ZFC:

∀𝑋∀𝛽 < ℵఈ < |ℝ| (𝐵𝑎𝑠𝑒(𝑋, 𝛽) ⟶ 𝐸𝑥𝑡(𝑋, 𝛽))
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John Howe

Ramseydegreesof structureswith equivalence relations

The Ramsey theory of homogeneous structures is an attempt to answer the

question of how the inϐinite version Ramsey’s theorem changes if instead of

having 𝜔 as a pure set, we require more structure. This dates back to work

of Galvin and Devlin on the rationals, with more recent results about graphs

coming Sauer and Dobrinen. Both of these have used techniques involving tree

Ramsey theorems, whereas Nguyen Van Thé’s work about ultrametric spaces

uses the classical Ramsey theorem. I will explain some recent work unifying

these approaches and yielding results about the generic ordered equivalence

relation.



54 Set Theory

Joanna Jureczko

New results on partitioner-representable algebras

In 1982 Baumgartner and Weese introduced the natural notion of partitioners.

Remind that if 𝐹 is a mad family, then a set 𝑎 ⊆ 𝜔 is called a paritioner of 𝐹 iff for

all 𝑏 ∈ 𝐹 either 𝑏 − 𝑎 or 𝑏 ∩ 𝑎 is ϐinite. Then, if 𝔹 is a Boolean algebra and 𝐼 is an

ideal in 𝔹 generated by 𝐹 and ϐinite sets, the algebra𝔹/𝐼 is called the partition

algebra of 𝐹. If a Boolean algebra is isomorphic to the partition algebra of some

mad family, then such an algebra is called to be representable.

In [1] the authors proved several important theorems in this subject, among

others they showed that under (CH) each Boolean algebra of cardinality⩽ 𝔠 is rep-

resentable. They also show that there are algebras which are non-representable

in some models.

The authors in [1] also posed a number of problems which were solved later, (see

[3]). We will show the solution of Problem 3: Must every representable algebra

be embeddable in 𝑃(𝜔)/𝑓𝑖𝑛 ? Among others we will show that there are some

models in which 𝑃(𝜔ଵ) is embeddable in 𝑃(𝜔)/𝑓𝑖𝑛 but not representable, and

conversely. The most our unexpected result is that there is a model in which

𝑃(𝜔)/𝑓𝑖𝑛 is not representable. During the talk we also present some related

results.

This is the joint work with Ryszard Frankiewicz.
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Borisa Kuzeljević

Antichains of copies of ultrahomogeneous structures

We analyze possible cardinalities of maximal antichains of isomorphic copies

of countable ultrahomogeneous structures. For a countable ultrahomogeneous

relational structure 𝑋, ℙ(𝑋) denotes the set of all substructures of 𝑋 isomorphic

to it. A copy 𝑌 ∈ ℙ(𝑋) is called large if it intersects each orbit of 𝑋. We say that a

collection𝒜 of copies of 𝑋 is an antichain in ℙ(𝑋) if 𝑋 cannot be embedded into

the intersection of any two elements of𝒜. We show that if the age of 𝑋 satisϐies

the strong amalgamation property, then the structure 𝑋 can be partitioned into

countably many large copies and there is an almost disjoint family of large copies

of size continuum. We also show that for a countable ultrahomogeneous poset 𝑃,

there is a maximal antichain of size continuum in ℙ(𝑃), while there is a count-

able maximal antichain in ℙ(𝑃) if and only if 𝑃 is not isomorphic to a countable

antichain or a disjoint union of inϐinitely many rational lines. This is joint work

with Miloš Kurilić.
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Maxwell Levine

Singular Cardinals of Uncountable Coϐinality

Much of the recent research in set theory focuses on singular cardinals and their

successors because they are the subjects of both independence proofs and direct

ZFC theorems. One of the most famous examples is Easton’s Theorem: The

continuum function 𝜅 ↦ 2఑ can be any function on the class of regular cardinals

as long as it is monotonic and obeys König’s Theorem. It was thought that this

result could be extended to singular cardinals, but this was refuted by Silver,

who proved thatGCH cannot fail for the ϐirst time at a singular of uncountable

coϐinality. The behavior of singular cardinals of uncountable coϐinality will be

the focus of this talk.

We present recent results in broad strokes. The ϐirst, which is joint work with

Dima Sinapova, concerns the square property at singularized cardinals. It was

known that if 𝜅 is inaccessible in an inner model 𝑉, and if 𝑉 ⊂ 𝑊where (𝜅ା)௏ =

(𝜅ା)ௐ and (cf𝜅)ௐ = 𝜔, then �఑,ఠ holds in𝑊. However, we ϐind that this does

not generalize to the uncountable case: There are models 𝑉 ⊂ 𝑊 in which 𝑉 ⊧ 𝜅

is inaccessible”, (𝜅ା)௏ = (𝜅ା)ௐ, and 𝜔 < (cf𝜅)ௐ < 𝜅, and yet�఑,ఛ fails in𝑊 for

all 𝜏 < 𝜅.

If time allows, we will present a second result, which is joint work with Sy David

Friedman, and concerns an Easton-style theorem with regard to the property,

“𝜅 ∩ cof(𝜔) has a non-reϐlecting stationary subset”. The class of cardinals 𝜅 that

satisfy this property can be essentially any class modulo trivial constraints—for

example, it is possible to obtain a model in which this property holds when 𝜅 is a

successor of a regular cardinal, but fails if 𝜅 is inaccessible or if 𝜅 is the successor

of a singular cardinal. The most challenging case here is that of successors of

singulars of uncountable coϐinality.
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Noah Schoem

Destruction of ideal saturation

An ideal 𝐼 on 𝜅 is 𝜅ା-saturated if every antichain of (𝑃(𝜅)/𝐼, ≤ூ) has cardinality≤

𝜅, and is 𝜅ା-presaturated if 𝐼 is precipitous and the forcing (𝑃(𝜅)/𝐼, ≤ூ) preserves

𝜅. We answer an open question of [1] of whether there is a forcing extension that

destroys 𝜅ା-saturation of ideals on 𝜅while preserving their 𝜅ା-presaturation in

the afϐirmative.
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Jaroslav Šupina

Cardinal invariants and ideal convergence

We discuss several cardinal invariants of the continuum which describe com-

binatorial properties of ideals on natural numbers. Invariants of our interest

appeared during investigations of ideal convergences of sequences of real valued

functions or associated covering properties. The talk is based mainly on invari-

ants introduced in [1, 3, 2].

The research is supported by the grant 1/0097/16 of Slovak Grant Agency VEGA.
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Dorottya Sziráki

Perfect sets and games on generalized Baire spaces

The generalized Baire space for an uncountable cardinal 𝜅 = 𝜅ழ఑ is the space
఑𝜅 of functions 𝜅 → 𝜅 equipped with the<𝜅-support topology. The study of the

topology and descriptive set theory of these spaces is an active area of research,

with close connections to many other areas of set theory and to model theory.

The notions of perfectness, scatteredness and the Cantor-Bendixson hierarchy

were ϐirst generalized to the setting of generalized Baire spaces by Jouko Väänä-

nen, based on certain games of uncountable length. Starting out from concepts

introduced by Geoff Galgon, Tapani Hyttinen and Jouko Väänänen, we study some

different possible generalizations of these notions. We investigate in detail the

connections between these different generalizations and between the games

underlying their deϐinitions. For example, we show that Väänänen’s generalized

Cantor-Bendixson theorem is equivalent to the 𝜅-perfect set property, and is

therefore equiconsistent with the existence of an inaccessible cardinal above 𝜅.
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Sourav Tarafder

Foundations of mathematics in a model of
paraconsistent set theory

Based on the Boolean-valued model construction of classical set theory, we con-

structed generalised algebra-valued models in [2]. We deϐined a three-valued

algebra PSଷ such that its logic is paraconsistent [1], and the PSଷ-valued model

V(PSଷ) validates the negation-free fragment of ZF [2]. In [3], we studied ordinal

numbers in V(PSଷ).

In this talk, we shall discuss properties of the natural numbers in V(PSଷ). We

consider the ordinal𝜔 (as deϐined in [3]) as the set of natural numbers and prove

that this is an inductive set; from this, we conclude that mathematical induction

holds inV(PSଷ) and discuss the arithmetic of natural numbers in this model. Using

the standard deϐinition of sizes of sets via bijective functions, we shall deϐine the

notion of cardinality in our model and prove some classical theorems such as

Cantor’s theorem on the size of the power set of a set.
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Marta Vlasáková

Frege’s attitude towards sets

The modern notion of set is considered to be invented by Georg Cantor and

consistently established via some standard axiomatics of set theory. Set theory

is primarily a mathematical discipline, but the current classical logic is usually

held to be closely connected with it. Though logic has historically operated

with “extensions of concepts” which are in some sense similar to Cantorian sets,

there are important differences between the both concepts. The main difference

consists in dealing with sets as “individuals”, i.e. as objects like any others. The

Cantorian notion of set was introduced into logic by Gottlob Frege. I would like

to elucidate Frege’s attitude towards sets and their role in logic. Frege did not

need the notion of set or extension of a concept for grounding logic at all. He

considered the notion to be “something derived, whereas in the concept—as I

understand the word—we have something primitive” and “the primitive laws

of logic may contain nothing derived”. But he needed the notion for his ediϐice

of logicism. After its collapse due to Russell’s uncovering of a paradox, Frege

eventually refused Cantorian sets completely. There are no objects like that.
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Ayse Berkman

Sharp actions of groups in the ϐiniteMorley rank context

After introducing basics on permutation groups of ϐinite Morley rank, I plan to

focus on sharply 2-transitive and generically sharply 𝑛-transitive group actions

in the ϐinite Morley rank setting.

Let 𝐺 be a group acting on a set 𝑋 and ϐix a positive integer 𝑛. If for any two

𝑛-tuples (𝑥ଵ, … , 𝑥௡) and (𝑦ଵ, … , 𝑦௡) consisting of distinct elements of 𝑋, there

exists a (unique) 𝑔 ∈ 𝐺 such that 𝑔𝑥௜ = 𝑦௜ for all 𝑖 = 1,… , 𝑛, then we say 𝐺 acts

(sharply) 𝑛-transitively on 𝑋.

For any ϐield (or more generally, for any near-ϐield) 𝐾, the action of the group of

afϐine𝐾-linear transformations on𝐾 viewed as an afϐine line, that is𝐾∗⋉𝐾ା ↷ 𝐾,

is sharply 2-transitive. We call such actions standard sharply 2-transitive actions.

Sharply 2-transitive ϐinite groups were classiϐied by Zassenhaus in 1936. For a

long time, it hadbeen anopenquestionwhether every inϐinite sharply 2-transitive

group is standard or not. Finally in 2017, Rips, Segev and Tent, in 2016, Tent

and Ziegler; constructed examples of sharply 2-transitive groups which are not

standard. However, their examples are not of ϐinite Morley rank. Hence the

problem remains open in the ϐinite Morley rank context.

In my talk, ϐirst I shall talk about the following partial solution to the problem.

Theorem. (Altınel, B., Wagner, 2019) Let 𝐺 be an inϔinite sharply 2-transitive

group of ϔinite Morley rank, and of characteristic 𝑝. Then the following holds.

(a) If 𝑝 = 3, then 𝐺 is standard.

(b) If 𝑝 = 2, then 𝐺 splits.

(c) If 𝑝 ≠ 2 and 𝐺 splits, then 𝐺 is standard.

In a sharply 2-transitive group, if the stabilizer of an element has no involutions,

then we say that the characteristic of the group is 2. Otherwise, all strongly real

elements (that is, products of two distinct involutions) are conjugate, and their

orders are equal to some prime 𝑝 ⩾ 3, or they are of inϐinite order. In this case,

we say the characteristic of the group is 𝑝 or 0, respectively. If 𝐺 = 𝑁 ⋊ 𝑠𝑡𝑎𝑏(𝑥)

for some 𝑥 ∈ 𝑋 and normal subgroup 𝑁� 𝐺, then we say 𝐺 splits.

The second part of my talk will be devoted to the study of generically sharply

𝑛-transitive groups. More precisely, I shall talk about the following theorem.

Theorem. (B., Borovik, 2018) Let 𝐺 be a group of ϔinite Morley rank, and 𝑉 a

connected abelian group of Morley rank 𝑛 with no involutions. Assume that 𝐺 acts
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deϔinably and generically sharply 𝑛-transitively on 𝑉, then there is an algebraically

closed ϔield 𝐹 of characteristic not 2, such that 𝐺 ↷ 𝑉 is equivalent to GL௡(𝐹) ↷ 𝐹௡.

If 𝐺 is sharply transitive on a generic subset of 𝑋, then we say 𝐺 acts generically

sharply transitively on 𝑋. Similarly, if the induced action of 𝐺 on 𝑋௡ is generically

sharply transitive, then we say 𝐺 acts generically sharply 𝑛-transitively on 𝑋.
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Philip Dittmann

Models of the common theory of algebraic extensions of
the rational numbers

Although the theory of algebraic extensions ofℚ has many properties normally

seen as undesirable – for instance it is not computably enumerable, and hasmany

completions with bad stability properties –, it still makes sense to investigate

its non-standard models. Using the model theory of local ϐields, as well as some

algebraic ingredients interesting in their own right, one can show that every such

“non-standard algebraic” ϐield is dense in all its real and 𝑝-adic closures. Along the

way, we will encounter the classical notion of the Pythagoras number from ϐield

theory, as well as a new 𝑝-adic version of the same, inspired by axiomatisations of

the universal theory of local ϐields. As a consequence of the denseness, we obtain

a result on deϐinability of the valuation ring in henselian ϐields whose residue

ϐield is a number ϐield.

This is joint work with Sylvy Anscombe and Arno Fehm.
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Model theory of adeles. Arithmetic equivalence

Let 𝐴௄ be the ring of adeles of a number ϐield 𝐾. Only after Ax had given his

analyses of uniformEƹ deϐinability and decidability for the completions of 𝐾 at the

its standard absolute values (ϐifty years ago) could one give informative analyses

of the deϐinability and decidability for the individual 𝐴௄. This was ϐirst done,

early on, by Weisspfenning. Much later Derakhshan and I have given a more

algebraic treatment purely in the language of rings. Still, many questions remain

unanswered, notably that of deϐinability and decidability uniformly in K. This is

related to basic issues of unbounded ramiϐication ( going back toHerbrand’swork

in algebraic number theory). Some of these issues will be sketched, but the main

emphasis will be on a question posed in other terms by number theorists more

than eighty years ago. The question asks to what extent 𝐴௄ determines 𝐾. It has

been known for a long time that 𝐴௄ does not determine 𝐾 (up to isomorphism)

in general, and much ϐine structure has been discovered (involving Galois theory,

zeta functions, class numbers, etc). In the talk I will give a thorough analysis of

elementary equivalence for adele rings, and show that it coincides with isomor-

phism. I also reformulate some work of the number theorists to show that for

any 𝐾 there are at most ϐinitely many 𝐿 so that 𝐴௄ and 𝐴௅ are isomorphic.Eƹ

This work is joint with J.Derakhshan (Oxford).
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Francesco Parente

Model-theoretic properties of ultraϐilters and universal-
ity of forcing extensions

In this talk, I will discuss some recent results at the interface between model

theory and set theory. The ϐirst part will be concerned with model-theoretic

properties of ultraϐilters in the context of Keisler’s order. I will use the framework

of ‘separation of variables’, recently developed byMalliaris and Shelah, to provide

a new characterization of Keisler’s order in terms of saturation of Boolean ul-

trapowers. Furthermore, I will show that good ultraϐilters on complete Boolean

algebras are precisely the ones which capture the maximum class in Keisler’s

order, answering a question posed by Benda in 1974.

In the second part of the talk, I will report on joint work with Matteo Viale in

whichwe apply the above results to the study ofmodels of set theory. In particular,

our work aims at understanding the universality properties of forcing extensions.

To this end, we analyse Boolean ultrapowers of 𝐻ఠଵ in the presence of large

cardinals and give a new interpretation of Woodin’s absoluteness results in this

context.
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Alice Medvedev, Alexander Van Abel*

The Feferman-Vaught Theorem and products of ϐinite
ϐields

We prove that in a product ring of ϐinite ϐields, the deϐinable subsets are boolean

combinations of ∃∀∃-deϐinable sets. This follows from the Feferman-Vaught The-

orem on deϐinability in product structures [2], and Kiefe’s quantiϐier reduction re-

sult for ϐinite ϐields [1]. We obtain via our proof that products of integral domains

have the maximum amount of deϐinable subsets allowed by the Feferman-Vaught

theorem.
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MB-homogeneous graphs

A relational structure𝐺 is homomorphism-homogeneous if every homomorphism

𝑓 between ϐinite induced substructures is the restriction of an endomorphism 𝐹

of 𝐺 to the domain of 𝑓 (see [1]). A subtype of homomorphism homogeneity is

IB-homogeneity, where each isomorphism between ϐinite substructures extends

to a bijective endomorphism of the ambient structure.

A variant of Fraı̈ssé-s theorem for IB-homogeneous structures establishes that

the limit is unique up to bi-equivalence (𝑀 and 𝑁 are bi-equivalent if every

isomorphismwith ϐinite domain in𝑀 and image in𝑁 extends to a bijective homo-

morphism𝑀 → 𝑁), but there exist uncountablymany countable IB-homogeneous

graphs, and even uncountably many pairwise non-isomorphic IB-homogeneous

graphs in the same bi-equivalence class [2]. Thus, the best we can hope for is a

classiϐication up to the coarser relation of bimorphism equivalence. We present

such a classiϐication, answering a question from [2], as a corollary of a result

stating that any connected homomorphism-homogeneous graph that does not

contain the Rado graph as a spanning subgraph has ϐinite independence number.
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John Baldwin

On strongly minimal Steiner systems: Zilber’s conjec-
ture, universal algebra, and combinatorics

With Gianluca Paolini [1], we constructed, using a variant on the Hrushovski

dimension function, for every 𝑘 ≥ 3, 2ఓ families of strongly minimal Steiner

𝑘-systems. We study the mathematical properties of these counterexamples to

Zilber’s trichotomy conjecture rather than thinking of them as merely exotic

examples. In particular the long study of ϐinite Steiner systems is reϐlected in

results that depend on the block size 𝑘. A quasigroup is a structure with a bi-

nary operation such that for each equation 𝑥𝑦 = 𝑧 the values of two of the

variables determines a unique value for the third. The new Steiner 3-systems

are bi-interpretable with strongly minimal Steiner quasigroups. For 𝑘 > 3, we

show the pure 𝑘-Steiner systems have ‘essentially unary deϐinable closure’ and

do not interpret a quasigroup. But we show that for 𝑞 a prime power the Steiner

𝑞-systems can be interpreted into speciϐic sorts of quasigroups, block algebras.

This show a dichotomy within the class of strongly minimal sets with ϐlat geome-

tries.

We extend the notion of an (𝑎, 𝑏)-cycle graph arising in the study of ϐinite and

inϐinite Stein triple systems ([2]) by introducingwhatwe call the (𝑎, 𝑏)-path graph

of a block algebra. We exhibit theories of strongly minimal block algebras where

all (𝑎, 𝑏)-paths are inϐinite and others in which all are ϐinite only in the prime

model. We show how to obtain combinatorial properties (e.g. 2-transitivity) by

either varying the basic collection of ϐinite partial Steiner systems or modifying

the 𝜇 function which ensures strong minimality.
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Emanuele Bottazzi*

Anexistence result for a class of partial differential equa-
tions

We study a nonstandard formulation for time-dependent partial differential

equations of the form

ቊ
𝑢௧ = 𝑓 (𝑢, 𝑃ଵ(𝑢), … , 𝑃௡(𝑢)) in Ω ⊆ ℝ௞

𝑢(0) = 𝑢଴
(3.1)

with 𝑃௜(𝑢) = ∑
ఈ∈ூ௜

𝑎ఈ
డ|ఈ|௨

డ௫ఈ
and with distributional or measure-valued initial data

𝑢଴. Equations of this form include linear and nonlinear diffusion and systems of

conservation laws. Despite their similarities, many of these problems are studied

with different techniques and have different notions of solutions [1, 2, 3].

Working in the setting of Robinson’s nonstandard analysis, we discretize the

differential operators 𝑃௜ in space by means of ϐinite differences of an inϐinitesimal

step 𝜀: the resulting hyperϐinite system of ODEs is formally equivalent to (1).

If 𝑓 is Lipschitz continuous, this system has a unique solution that induces a

standard solution to problem (1). For the forward-backward heat equations, this

standard solution coincides with the solution obtained with a vanishing viscosity

approach; moreover, it is possible to characterize its asymptotic behaviour [1].

We suggest that this nonstandard formulation could be successfully employed

in the study of other classes of problems and might lead to novel qualitative

information about their solutions.
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David Bradley-Williams

Canonical invariants for t-stratiϐications

A classical tool in singularity theory is the notion of a stratiϐication of algebraic

subsets ofℝ௡ or ℂ௡. In [1], Immanuel Halupczok has developed the notion of t-

stratiϔication in the context of sets deϐinable in a valued ϐield. Wewill present joint

work with I. Halupczok, in which we investigate invariants of such stratiϐications

that we associate canonically to deϐinable sets, with particular interest in valued

ϐields such as such asℝ((𝑡)) and ℂ((𝑡)).

This is joint work with Immanuel Halupczok (HHU Düsseldorf).
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Miguel Campercholi

Dominions in ϐiltral quasivarieties

Let A ≤ B be structures, and𝒦 a class of structures. An element 𝑏 ∈ 𝐵 is domi-

nated by A relative to𝒦 if for all C ∈ 𝒦 and all homomorphisms 𝑔, 𝑔ᇱ ∶ B → C

such that 𝑔 and 𝑔ᇱ agree on 𝐴, we have 𝑔𝑏 = 𝑔ᇱ𝑏. Write 𝒟଴ଵ for the class of

bounded distributive lattices, let B ∶= 2× 2, and let A be the sublattice of Bwith

universe {⟨0, 0⟩ , ⟨0, 1⟩ , ⟨1, 1⟩}. As 01-lattice homomorphisms map pairs of com-

plemented elements to pairs of complemented elements, and every element in a

distributive lattice has at most one complement, it follows that ⟨1, 0⟩ ∈ dom𝒦
B A.

The key element to take away from this argument is that ⟨1, 0⟩ is generated by 𝐴

if we add the complementation operation to B. Since this (partial) operation is

deϐined in every member of 𝒟଴ଵ by the conjunction of atomic formulas

𝜑(𝑥, 𝑦) ∶= 𝑥 ∧ 𝑦 = 0&𝑥 ∨ 𝑦 = 1,

it is preserved by all relevant maps. This situation generalizes as follows. Recall

that a class of algebraic structures is a quasivariety provided it is axiomatizable

and closed under direct products and substructures. A quasivariety 𝒬 is ϔiltral if

it is semisimple, its class of simple members is universal, and it is congruence

distributive. For instance,𝒟଴ଵ is a ϐiltral quasivariety. In our talk we shall discuss

the following result and some applications.

Theorem. Let 𝒬 be a ϔiltral quasivariety and letℳ be its class of simple members.

Suppose ℳ has the amalgamation property and ℳ௘௖ (the class of existentially

closed members inℳ) is axiomatizable. For all A,B ∈ 𝒬 such that A ≤ B and all

𝑏 ∈ 𝐵 the following are equivalent:

1. 𝑏 ∈ dom
𝒬
BA

2. There are a conjunction of atomic formulas 𝛿(𝑥̄, 𝑦) and 𝑎̄ ∈ 𝐴 such that:

• 𝛿(𝑥̄, 𝑦) deϔines a function in 𝒬

• B ⊨ 𝛿(𝑎̄, 𝑏)

• ℳ௘௖ ⊨ ∀𝑥̄∃𝑦 𝛿(𝑥̄, 𝑦).
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Christian Espindola

Preservation theorems for strong ϐirst-order logics

We solve an open problem dating back to 1977 mentioned in an article by John P.

Burgess, namely “Descriptive set theory and inϐinitary languages”. From the last

paragraph:

“One large problem in the model theory of strong ϐirst-order languages remains

open, which does not lend itself to abstract, descriptive-set-theoretic statement:

Canweprove for, say,ℒఠଵ,ீ, that any sentence preservedunder substructure (resp.

homomorphic image) is equivalent to a universal (resp. positive) sentence?”

We answer positively the question providing preservation results for this partic-

ular game logic. These are generalizations of the theorems of Łoś-Tarski (resp.

Lyndon) on sentences preserved by substructures (resp. homomorphic images).

The solution, in𝑍𝐹𝐶, is then extended to several variants of strong ϐirst-order logic

that do not satisfy the interpolation theorem; instead, the results on inϐinitary

deϐinability are used. Another consequence of our approach is the equivalence of

the Vopěnka principle and a general deϐinability theorem on subsets preserved

by homomorphisms.
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Sam van Gool

Monadic second order logic as a model companion

We present a connection between monadic second order logic and ϐirst order

model theory, which is emerging in our ongoing joint work with Silvio Ghilardi

[1, 2].

Monadic second order (MSO) logic, when interpreted in discrete structures,

is closely related to certain formal models of computation. For example, the

MSO-deϐinable sets of colored ϐinite linear orders (words) are exactly the regular

languages from automata theory. MSO logic and its connection to automata has

been studied on many more structures, including colorings of 𝜔 and of trees.

A fundamental insight due to Robinsonwas that the theory of algebraically closed

ϐields can be generalized to a purely logical notion of existentially closed model.

The syntactic counterpart of this notion is called the model companion of a ϐirst

order theory. We prove that MSO logic, both on 𝜔-words [1] and on binary trees

[2], can be viewed as the model companion of a ϐinitely axiomatized universal

ϐirst order theory. In each case, this universal theory is closely connected to

well-known modal ϐix-point logics.

Finally, we will point to our ongoing and future work on trees, in which we aim

to obtain a similar result for full MSO on trees, whereas our previous results

on trees only covered MSO on binary trees and bisimulation-invariant MSO on

arbitrary trees.
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Jan Hubička*, Matěj Konečný, Jaroslav Nešetřil

On Hrushovski properties of Hrushovski constructions

Class𝒦 of ϐinite 𝐿-structures has the extension property for partial automorphisms

(EPPA or Hrushovski property) if for every structure A ∈ 𝒦 there exists a struc-

ture B ∈ 𝒦 such that A ⊆ B and every partial automorphism of A (that is, an

isomorphism of its substructures) extends to automorphism of B.

It was shown by Hrushovski in 1992 that the class of all ϐinite graphs has EPPA.

Thanks to numerous applications in group theory and topological dynamics the

search for more classes with EPPA continues since then. The Herwig–Lascar

theorem, a deep result in the area, provides a structural condition for a class to

have EPPA and has been used to prove EPPA for most known examples.

Recently a new link to the structural Ramsey theory has been established. The

condition given by the Herwig–Lascar theorem is almost identical to a condition

given in [3] for the existence of a precompact Ramsey expansion. In [1], a class 𝒞ி
(constructed using the Hrushovski predimension construction) is studied, giving

a counterexample to questions in Ramsey theory. It is shown that 𝒞ி has no

EPPA, however, it is conjectured that a certain expansion (adding an orientation

of edges) has EPPA.

We prove this conjecture using a new strengthening of the Herwig–Lascar the-

orem [2]. Because 𝒞ி has non-unary algebraic closures, new techniques needs

to be developed. In particular, we work with a category of structures in lan-

guages equiped with a permutation group on the symbols. We discuss these new

techniques and their applications.
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A. R. Yeshkeyev, A. K. Issayeva*

The principle of a ”rheostat of atomicity” in the study of
AAP models

In this abstract, we want to share with the results concerning the study of count-

able algebraically prime and atomic models in the sense of studying inductive

generally speaking incomplete theories.

Further we will have deal with countable language and some different subclasses

of Jonsson theories.

Let𝐴𝐴𝑃bea ϐixed semantic property,𝐴𝐴𝑃 ∈ {atomicity, algebraically primeness}.

Principle of ”rheostat”. Let two countablemodels𝐴ଵ, 𝐴ଶ of some Jonsson theory

𝑇 be given. Moreover, 𝐴ଵ is an atomicmodel in the sense of [1], and𝑋 is (∇ଵ, ∇ଶ)−

𝑐𝑙 -algebraically prime set of theory 𝑇 and 𝑐𝑙(𝑋) = 𝐴ଶ.

By the deϐinition of (∇ଵ, ∇ଶ) - algebraic primeness of the set 𝑋, the model 𝐴ଶ is in

the same time existentially closed and algebraically prime. Thus, the model 𝐴ଶ
is isomorphically embedded in the model 𝐴ଵ. Since by condition the model 𝐴ଵ
is countably atomic, then according to the Vaught’s theorem, 𝐴ଵ is prime, i.e. it

is elementarily embedded in the model 𝐴ଶ. Thus, the models 𝐴ଵ, 𝐴ଶ differ from

each other only by the interior of the set 𝑋. This follows from the fact that any

element of 𝑎 ∈ 𝐴ଶ\𝑋 implements some principle type, since 𝑎 ∈ 𝑐𝑙(𝑋). That is,

all countable atomic models in the sense of [1] are isomorphic to each other, then

by increasing 𝑋we ϐind more elements that do not realize the principle type and,

accordingly, 𝑐𝑙(𝑋) is not an atomic model in the sense of [1]. Thus, the principle

of rheostat is that, by increasing the power of the set 𝑋, we move away from the

notion of atomicity in the sense of [1] and on the contrary, decreasing the power

of the set 𝑋wemove away from the notion of atomicity in the sense of [2].

In according abovementionednotionswehave somenumbers of theorems. Those

results very close to investigation around atomicity and algebraically primeness

in the frame of [2]. Nevertheless even if algebraically primeness is the same, but

the combinations of 𝐴𝐴𝑃-atomicity differs from atomicity from [2].

Bibliography

[1] R.VĆĚČčę, Denumerable models of complete theories in Inϔinitistic

Methode, Pergamon. London, 1961. P. 303-321.



Model Theory 79

[2] J.T.BĆđĉĜĎē, D.W. KĚĊĐĊė, Algebraically prime models, Ann. Math. Logic.

1981, P. 289-330.



80 Model Theory

Aleksander Iwanow

Pseudocompact unitary representations of ϐinitely gen-
erated groups

We consider unitary representations of ϐinitely generated groups as continuous

metric structures ([1]) which are obtained from Hilbert spaces over ℂ by adding

some unitary operators. It is not known if any unitary representation is elemen-

tarily equivalent to an ultraproduct of ϐinite dimensional unitary representations

(i.e. if its unit ball is pseudocompact). We connect this problem with the topic

of approximations by metric groups (in particular with property MF). We also

consider appropriate algorithmic problems concerning continuous theories of

natural classes of these structures.
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Tomáš Jakl

On connections between logic on words and limits of
graphs

Trying to adapt decidability tools from regular languages to more general com-

plexity classes, has naturally led to the study of applications of duality-theoretic

methods in the logic on words. In order to recognise a non-regular language one

has to construct a syntactic object by the so-called codensity construction [1].

In a completely different discipline, in the limit theory of graphs, it is an ongoing

open problem to ϐind a suitable limit object for sequences of ϐinite graphs. This

has important applications, for example, when modelling computer networks

or biological systems. Taking limits of graphs in the space of ϐinitely additive

measures generalises many previous approaches [2].

In this talk I will explain how those two seemingly different theories, in fact, are

a special case of one general construction. I will also mention how employing

duality-theoretic techniques helps us understand the situation better. By doing

so the space of measures is understood simply as a spectrum of the Lindenbaum-

Tarski algebra for the First-Order logic extended with new quantiϐiers.

Note that this theory generalises to arbitrary classes of ϐinite structures.

(This is a joint work with Mai Gehrke and Luca Reggio.)
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Hirotaka Kikyo

OnautomorphismgroupsofHrushovski’s pseudoplanes
in rational cases

Hrushovski constructed pseudoplanes corresponding to irrational numbers

which refute a conjecture by Lachlan [2]. Hrushovski’s construction is valid

for any real numbers 𝛼 with 0 < 𝛼 < 1. The automorphism groups of the

pseudoplanes corresponding to rational numbers 𝛼with 0 < 𝛼 < 1 are simple

groups.
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David M. Evans, Jan Hubička, Matěj Konečný*, Yibei Li

Simplicity of automorphism groups of
generalised metric spaces

We study automorphism groups of homogeneous generalised metric spaces 𝔽,

where the distances come from a partially ordered commutative semigroup

𝔐 = (𝑀;⊕,⪯) such that the ternary relation ∣⌣ deϐined on ϐinite subsets of 𝔽 by

𝐴 ∣⌣
஼

𝐵 ⟺ (∀𝑎 ∈ 𝐴) (∀𝑏 ∈ 𝐵) ൫𝑑(𝑎, 𝑏) = inf⪯ {𝑑(𝑎, 𝑐) ⊕ 𝑑(𝑏, 𝑐) ∶ 𝑐 ∈ 𝐶}൯

is a stationary independence relation as deϐined by Tent and Ziegler [1]. We adapt

the proof of Tent and Ziegler that the automorphism group of the Urysohn ball is

simple [2] and prove the same for 2 ≤ |𝑀| < 𝜔 and 1-supported ∣⌣.

Such𝔐-metric spaces were studied by Hubička, Konečný and Nešetřil [3, 4] in

the context of Ramsey theory. They generalise most known binary symmetric

homogeneous structures and in particular, as a corollary, we obtain simplicity of

the automorphism groups of Cherlin’s ϐinite-diameter primitive 3-constrained

metrically homogeneous graphs and a strengthening of the results of Li [5].
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Thomas Kucera*, Marcos Mazari-Armida

On universal modules with pure embeddings

This paper arose out of the realization of the second author that some notions of

the theory of abstract elementary classes can be used to generalize a result of

Shelah [2, 1.2] concerning the existence of universal reduced torsion-free abelian

groups with respect to pure embeddings. The contribution of the ϐirst author

was limited to helping him expand and extend the results to theories of modules.

We show that certain classes of modules have universal models with respect to

pure embeddings.

Theorem. Let 𝑅 be a ring, 𝑇 a ϔirst-order theory with an inϔinite model extending

the theory of 𝑅-modules and K் = (𝑀𝑜𝑑(𝑇), ≤௣௣) (where ≤௣௣ stands for pure

submodule). Assume K் has joint embedding and amalgamation.

If 𝜆|்| = 𝜆 or ∀𝜇 < 𝜆(𝜇|்| < 𝜆), then K் has a universal model of cardinality 𝜆.

We begin the study of limit models for classes of𝑅-modules with joint embedding

and amalgamation. As a by-product of this study, we characterize limit mod-

els of countable coϐinality in the class of torsion-free abelian groups with pure

embeddings, answering Question 4.25 of [1].

Theorem. If 𝐺 is a (𝜆, 𝜔)-limit model in the class of torsion-free abelian groups

with pure embeddings, then 𝐺 ≅ ℚ(ఒ)⊕∏
௣ ℤ

(ఒ)
(௣)

(ℵ଴)

.
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Junguk Lee*, Daniel Max Hoffmann

Elementary theories of PAC structures via Galois groups

Our main interested objects are PAC structures([5, Deϐinition 3.1]), which gener-

alize perfect PAC ϐields. We show that the ϐirst order theories of PAC structures

are determined by their Galois groups. Really, in joint work [3] with Dobrowolski,

we showed that if given PAC structures have Galois groups isomorphic over a

Galois group of a common substructure, then they are elementary equivalent,

which generalizes the elementary equivalence theorem for PAC ϐields(see [4,

Theorem 20.3.3]).

In the sequel work [6], we try to generalize criterion to say the theory of a PAC

ϐield is 𝑁𝑆𝑂𝑃௡ if the theory of the complete system of its Galois group is 𝑁𝑆𝑂𝑃௡
for 𝑛 ≥ 1([1, Theorem 3.9] and [7, Corollary 7.2.7, Proposition 7.2.8]). Zoé’s

amalgamation theorem with respect to complete systems([1, Theorem 3.1]) is

crucial in this criterion.

To generalize this amalgamation theorem, we introduce notions of sorted Galois

groups and of sorted complete system of sorted Galois groups. Using sorted

complete systems, we generalize Zoé’s amalgamation theorem to PAC structures.

We also generalize the criterion of 𝑁𝑆𝑂𝑃௡ for PAC ϐields to PAC structures.
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Michael Lieberman*, Jiří Rosický, Sebastien Vasey

Weak factorization systems and stable independence

Wediscuss recent jointworkwith Rosický andVasey, [1], which reveals surprising

connections between model-theoretic independence notions and the behavior

of weak factorization systems, which play an important role in the analysis of

model categories and in homological algebra. In essence, given a reasonable

category𝒦 and family of mapsℳ, the category𝒦ℳ obtained by restricting to the

morphisms inℳ has a stable independence notion just in caseℳ forms the left

half of a coϔibrantly generated weak factorization system, i.e. one generated by

pushouts and transϐinite compositions from a set—rather than a class—of basic

maps. We sketch the argument, recalling the category-theoretic generalization of

stable nonforking independence from [1], as well as the necessary terminology

involving weak factorization systems.

As a particular example, we specialize to the case 𝒦 = 𝑅-Mod andℳ a class

of homomorphisms with kernels in a ϐixed subcategory: this generalizes the

(abstract elementary) classes of modules 𝑁 considered by Baldwin-Eklof-Trlifaj,

[3], and answers a number of questions from their paper. In particular, we prove

that this class is tame and stable whenever it is an AEC.
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Johan Lindberg

Constructive semantics and the Joyal-Tierney
representation theorem

In this talk I’ll describe an ongoing project of further developing the constructive

model theory for geometric and ϐirst-order logic using complete Heyting Algebra-

valued sets. In particular, we study certain locales constructed from the syntax of

the theory, some cases of which can be seen as analogues for geometric logic of

certain formal topologies ϐirst investigated by T. Coquand with collaborators in

[1], [2].

Starting from a geometric theory 𝕋, the locales 𝑋 we construct are such that

the geometric morphism into the classifying topos Set[𝕋] from sheaves on 𝑋 is

an open surjection, hence these locales can be used for representing Set[𝕋] in

the style of Joyal and Tierney [3]. In fact, our analysis of when this geometric

morphism is anopen surjection allowsus to identify and compare several possible

locales that can be used to that end, including spatial ones (a la Butz-Moerdijk

[4]) when 𝕋 has enough models.

This is joint work with Henrik Forssell, Oslo University.
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Rosario Mennuni

Product of invariant types modulo
domination-equivalence

In stable theories it is possible to associate to sufϐiciently big models a certain

monoid obtained by quotienting the semigroup of types with tensor product

by a relation called “domination-equivalence”. This equivalence relation was

generalised to arbitrary theories in [1], where it was studied in the case of the

theory of algebraically closed valued ϐields and it was shown that every global

invariant type is domination-equivalent to a product of types concentrating in the

residue ϐield or in the the value group. Unfortunately, domination-equivalence is

not always a congruence with respect to the product of invariant types, as shown

in [2]. The aim of this talk is to present an instance of this incompatibility, along

with a ϐirst development of the general theory of this interaction.
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A.R. Yeshkeyev, N.M. Mussina*

Hybrids of classes from Jonsson spectrum

Let 𝐴 be an arbitrary model of countable language. 𝐽𝑆𝑝(𝐴) = {𝑇/𝑇 is Jonsson

theory in this language and 𝐴 ∈ 𝑀𝑜𝑑𝑇} and 𝐽𝑆𝑝(𝐴) is said to be the Jonsson

spectrum of the model.

Deϐinition. Wesay that the Jonsson theory𝑇ଵ is cosemantic to the Jonsson theory

𝑇ଶ (𝑇ଵ ⋈ 𝑇ଶ) if 𝐶 ଵ்
= 𝐶

ଶ்
, where 𝐶

௜்
are semantic model of 𝑇௜, 𝑖 = 1, 2.

The relation of cosemanticness on a set of theories is an equivalence relation.

Then 𝐽𝑆𝑝(𝐴)/ ⋈ is the factor set of the Jonsson spectrum of the model 𝐴 with

respect to⋈.

Let us deϐine the essence of the operation of the symbol⊡ for algebraic construc-

tion of models, which will be play important role in the deϐinition of hybrids. Let

⊡ ∈ {∪, ∩, ×,+,⊕,∏
ி
, ∏
௎
}, where ∪-union, ∩-intersection, ×-Cartesian product,

+-sum and⊕-direct sum,∏
ி
-ϐiltered product and∏

௎
-ultraproduct.

Deϐinition. Ahybridof classes [𝑇]ଵ, [𝑇]ଶ is the class [𝑇]௜ ∈ 𝐽𝑆𝑝(𝐴)/ ⋈ if𝑇ℎ∀∃(𝐶ଵ⊡

𝐶ଶ) ∈ [𝑇]௜, we denote such hybrid as 𝐻([𝑇]ଵ, [𝑇]ଶ).

Fact. For the theory 𝐻([𝑇]ଵ, [𝑇]ଶ) in order to be Jonsson enough to be that (𝐶ଵ⊡

𝐶ଶ) ∈ 𝐸[்]௜ , where [𝑇]௜ ∈ 𝐽𝑆𝑝(𝐴)/ ⋈.

Finally, the main results are the following theorem.

Theorem. Let [𝑇]ଵ, [𝑇]ଶ be perfect convex existentially prime complete for∀∃-sentences

classes from 𝐽𝑆𝑝(𝐴)/ ⋈. 𝑋௜ are ∀∃-𝑑𝑐𝑙-sets in the class [𝑇]௜, 𝑖 ∈ {1, 2}, i.e. 𝑋௜ ⊆ 𝐶௜,

where𝑀௜=𝑑𝑐𝑙(𝑋௜)∈ 𝐸[்]௜ ,𝑇௜ = 𝑇ℎ∀∃(𝑀௜)are also perfect convex existentially prime

complete for ∀∃-sentences Jonsson theories. Then, if their hybrid 𝐻([𝑇]ଵ, [𝑇]ଶ) is

a model consistent with [𝑇]௜, then 𝐻([𝑇]ଵ, [𝑇]ଶ) is a perfect class from 𝐽𝑆𝑝(𝐴)/ ⋈

for 𝑖 = 1, 2.

Theorem. Let [𝑇]ଵ, [𝑇]ଶ satisfy the conditions of Theorem 1 and [𝑇]ଵ, [𝑇]ଶ be

𝜔-categorical. Then their hybrid 𝐻([𝑇]ଵ, [𝑇]ଶ) is also a 𝜔-categorical class from

𝐽𝑆𝑝(𝐴)/ ⋈.
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Inessa Pavlyuk*, Sergey Sudoplatov

On ranks for families of theories of ϐinite abelian groups

We continue to study families of theories of abelian groups [1] characterizing

𝑒-minimal subfamilies [2] for ϐinite abelian groups by Szmielew invariants 𝛼௣,௡,

𝛽௣, 𝛾௣, 𝜀 [4, 5], where 𝑝 are prime numbers, 𝑛 ∈ 𝜔 ⧵ {0}, as well as describing

possibilities for the rank 𝑅𝑆(⋅) [2].

We denote by 𝒯஺,௙௜௡ the family of all theories of ϐinite abelian groups.

Theorem. For any inϔinite family 𝒯 ⊆ 𝒯஺,௙௜௡ the following conditions are equiva-

lent: (1) 𝒯 is 𝑒-minimal; (2) 𝑑𝑖𝑚(𝒯) = 1, i.e., 𝒯 does not have independent limit

values for Szmielew invariants; (3) for any upper bound 𝛼௣,௡ ≥ 𝑚 or lower bound

𝛼௣,௡ ≤ 𝑚, for 𝑚 ∈ 𝜔, there are ϔinitely many theories in 𝒯 satisfying this bound;

having ϔinitely many theories with 𝛼௣,௡ ≥ 𝑚, there are inϔinitely many theories in

𝒯 with a ϔixed value 𝛼௣,௡ < 𝑚.

Theorem. Let 𝛼 be a countable ordinal, 𝑛 ∈ 𝜔 ⧵ {0}. Then there is a subfamily

𝒯 ⊂ 𝒯஺,௙௜௡ such that 𝑅𝑆(𝒯) = 𝛼 and 𝑑𝑠(𝒯) = 𝑛.

The families 𝒯 for the proof of Theorem 3 have closures 𝐶𝑙ா(𝒯) inside 𝒯஺,௙௜௡ ∪

𝒯஺,௣௙, where 𝒯஺,௣௙ is the set of theories of pseudoϐinite abelian groups, and these

closures are 𝑑-deϐinable.

This researchwaspartially supportedbyRussianFoundation forBasicResearches

(Project No. 17-01-00531-a), the program of fundamental scientiϐic researches

of the SB RAS No. I.1.1, project No. 0314-2019-0002, and Committee of Science

in Education and Science Ministry of the Republic of Kazakhstan (Grant No.

AP05132546).
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Dmitry Emelyanov, Beibut Kulpeshov, Sergey Sudoplatov*

On compositions of structures and compositions
of theories

We consider both compositions of structures and compositions of theories and

apply these compositions obtaining compositions of algebras of binary formulas

[1].

Let ℳ and 𝒩 be structures of relational languages Σℳ and Σ𝒩, respectively.

We deϐine the compositionℳ[𝒩] ofℳ and𝒩 satisfying Σℳ[𝒩] = Σℳ ∪ Σ𝒩,

𝑀[𝑁] = 𝑀 × 𝑁 and the following conditions:

1. if 𝑅 ∈ Σℳ ⧵ Σ𝒩, 𝜇(𝑅) = 𝑛, then ((𝑎ଵ, 𝑏ଵ), … , (𝑎௡, 𝑏௡)) ∈ 𝑅ℳ[𝒩] if and only

if (𝑎ଵ, … , 𝑎௡) ∈ 𝑅ℳ;

2. if 𝑅 ∈ Σ𝒩 ⧵ Σℳ, 𝜇(𝑅) = 𝑛, then ((𝑎ଵ, 𝑏ଵ), … , (𝑎௡, 𝑏௡)) ∈ 𝑅ℳ[𝒩] if and only

if 𝑎ଵ = … = 𝑎௡ and (𝑏ଵ, … , 𝑏௡) ∈ 𝑅𝒩;

3. if 𝑅 ∈ Σℳ ∩ Σ𝒩, 𝜇(𝑅) = 𝑛, then ((𝑎ଵ, 𝑏ଵ), … , (𝑎௡, 𝑏௡)) ∈ 𝑅ℳ[𝒩] if and only

if (𝑎ଵ, … , 𝑎௡) ∈ 𝑅ℳ, or 𝑎ଵ = … = 𝑎௡ and (𝑏ଵ, … , 𝑏௡) ∈ 𝑅𝒩.

The theory 𝑇 = 𝑇ℎ(ℳ[𝒩]) is called the composition 𝑇ଵ[𝑇ଶ] of the theories 𝑇ଵ =

𝑇ℎ(ℳ) and 𝑇ଶ = 𝑇ℎ(𝒩).

Theorem. Ifℳ and𝒩 have transitive automorphism groups thenℳ[𝒩] has a

transitive automorphism group, too.

By this theorem, 𝑇 = 𝑇ℎ(ℳ[𝒩]) is transitive, and the operationℳ[𝒩] can be

considered as a variant of transitive arrangements of structures [2].

The compositionℳ[𝒩] is called 𝐸-deϔinable ifℳ[𝒩] has an ∅-deϐinable equiv-

alence relation 𝐸 whose 𝐸-classes are universes of the copies of 𝒩 forming

ℳ[𝒩]. By the deϐinition, each𝐸-deϐinable compositionℳ[𝒩] is represented as a

𝐸-combination [3] of copies of𝒩with an extra-structure generated by predicates

onℳ and linking elements of the copies of𝒩.

Theorem. If a compositionℳ[𝒩] is 𝐸-deϔinable then the theory 𝑇ℎ(ℳ[𝒩]) uni-

quely deϔines the theories 𝑇ℎ(ℳ) and 𝑇ℎ(𝒩), and vice versa.

Theorem. If a composition ℳ[𝒩] is 𝐸-deϔinable then the algebra 𝔓் of binary

isolating formulas for 𝑇 = 𝑇ℎ(ℳ[𝒩]) is isomorphic to the composition𝔓
ଵ்
[𝔓

ଶ்
]
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of the algebras 𝔓
ଵ்

and 𝔓
ଶ்

of binary isolating formulas for 𝑇ଵ = 𝑇ℎ(ℳ) and

𝑇ଶ = 𝑇ℎ(𝒩).
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Sergey Davidov, Senik Alvrtsyan, Davit Shahnazaryan*

Invertible binary algebrasprincipally isotopic to a group

A binary groupoid 𝑄(𝐴) is a non-empty set 𝑄 together with a binary operation

𝐴. Binary groupoid 𝑄(𝐴) is called quasigroup if for all ordered pairs (𝑎, 𝑏) ∈ 𝑄ଶ

exists unique solutions 𝑥, 𝑦 ∈ 𝑄 of the equations𝐴(𝑎, 𝑥) = 𝑏 and𝐴(𝑦, 𝑎) = 𝑏. The

solutions of these equations will be denoted by 𝑥 = 𝐴ିଵ(𝑎, 𝑏) and 𝑦 = ିଵ𝐴(𝑏, 𝑎),

respectively. A binary algebra (𝑄; Σ) is called invertible algebra or system of

quasigroups if each operation in Σ is a quasigroup operation.

We obtained characterizations of invertible algebras isotopic to a group or an

abelian group by the second-order formula.

Deϐinition. We say that a binary algebra (𝑄; Σ) is isotopic to the groupoid 𝑄(⋅),

if each operation in Σ is isotopic to the groupoid 𝑄(⋅), i.e. for every operation

𝐴 ∈ Σ there exists permutations 𝛼஺, 𝛽஺, 𝛾஺ of Q, that:

𝛾஺𝐴(𝑥, 𝑦) = 𝛼஺𝑥 ⋅ 𝛽஺𝑦,

for every𝑥, 𝑦 ∈ 𝑄. Isopoty is calledprincipal if𝛾஺ = 𝑒𝑝𝑠𝑖𝑙𝑜𝑛(𝜖 - unit permutation)

for every 𝐴 ∈ Σ.

Theorem. The invertible algebra (𝑄; Σ) is a principally isotopic to the abelian

group, if and only if the following second-order formula

𝐴(ିଵ𝐴(𝐵(𝑥, 𝐵ିଵ(𝑦, 𝑧)), 𝑢), 𝑣) = 𝐵(𝑥, 𝐵ିଵ(𝑦, 𝐴(ିଵ𝐴(𝑧, 𝑢), 𝑣))),

is valid in the algebra (𝑄; Σ ∪ Σିଵ ∪ିଵ Σ) for all 𝐴, 𝐵 ∈ Σ.

Corollary. [1] The class of quasigroups isotopic to groups is characterized by the

following identity:

𝑥(𝑦\((𝑧/𝑢)𝑣)) = ((𝑥(𝑦\𝑧))/𝑢)𝑣.

Theorem. The invertible algebra (𝑄; Σ) is a principally isotopic to a group if and

only if the following second-order formula:

𝐴(ିଵ𝐴(𝐵(𝑥, 𝑧), 𝑦), 𝐴ିଵ(𝑢, 𝐵(𝑤, 𝑦))) =

= 𝐴(ିଵ𝐴(𝐵(𝑤, 𝑧), 𝑦), 𝐴ିଵ(𝑢, 𝐵(𝑥, 𝑦))).

is valid in the algebra (𝑄; Σ ∪ Σିଵ ∪ିଵ Σ) for all 𝐴, 𝐵 ∈ Σ.

Corollary. The class of quasigroups isotopic to abelian groups is characterized by

the following identity:

((𝑥𝑧)/𝑦)(𝑢\(𝑤𝑦)) = ((𝑤𝑧)/𝑦)(𝑢\(𝑥𝑦)).
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Sebastien Vasey

Forking and categoricity in non-elementary
model theory

The classiϐication theory of elementary classes was started by Michael Morley

in the early sixties, when he proved that a countable ϐirst-order theory with a

single model in some uncountable cardinal has a single model in all uncountable

cardinals. The proof of this result, now called Morley’s categoricity theorem,

led to the development of forking, a notion of independence jointly generalizing

linear independence in vector spaces and algebraic independence in ϐields and

now a central pillar of modern model theory.

In recent years, it has become apparent that the theory of forking can also be

developed in several non-elementary contexts. Prime among those are the ax-

iomatic frameworks of accessible categories and abstract elementary classes

(AECs), encompassing classes of models of any reasonable inϐinitary logics. A

test question to judge progress in this direction is the forty year old eventual cat-

egoricity conjecture of Shelah, which says that a version of Morley’s categoricity

theorem should hold of any AEC. I will survey recent developments, including

the connections with category theory and large cardinals, a theory of forking

in accessible categories (joint with M. Lieberman and J. Rosický), as well as the

resolution of the eventual categoricity conjecture from large cardinals (joint with

S. Shelah).
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Pedro H. Zambrano

Tameness in classes of generalized metric structures:
quantale-spaces, fuzzy sets, and sheaves

Tameness is a very important model-theoretic property of abstract classes of

structures, under the assumption of which strong categoricity ([4, 7]) and sta-

bility transfer theorems ([1, 8]) tend to hold. We generalize the argument of

Lieberman and Rosicky [5]—based on Makkai and Paré’s result on the acces-

sibility of powerful images of accessible functors ([3]) under the existence of

a proper class of almost strongly compact cardinalities ([2]) —that tameness

holds in classes of metric structures, noting that the argument works just as well

for structures with underlying Q-spaces, Q a reasonable quantale. Dropping the

reϐlexivity assumption from the deϐinition of metrics, we obtain a similar result

for classes with underlying partial metric spaces: through straightforward trans-

lations from partial metrics to fuzzy sets and sheaves, we obtain, respectively,

fuzzy and sheafy analogues of this result.
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Ali Enayat

Some recent news about truth theories

For a fragment B of PA (Peano arithmetic), CTି[B] (compositional truth over B)
is the theory formulated in the language of arithmetic augmented with a fresh

predicate T(𝑥) to express: “𝑥 is the Gödel number of a true arithmetical sentence”.

The axioms of CTି[B] consist of the axioms of B plus ϐinitely many sentences

that stipulate that T(𝑥) is well-behaved on atomic sentences, and obeys Tarski’s

familiar compositional clauses guiding the behaviour of the truth predicate. We

have known, since the pioneering work of Krajewski, Kotlarski, and Lachlan

(1981), that CTି[PA] is conservative over PA. In this talk we will discuss the

following recent developments:

• Recent joint work [1] of Pakhomov and the author on the equivalence

of CTି[I଴ + Exp] + DC with CT଴[PA], where DC is the axiom stating “a

disjunction of ϐinitelymany sentences is true iff one of the disjuncts is true”;

and CT଴[PA] is the result of adding the induction scheme for Δ଴-formulae

thatmention the truthpredicate toCTି[PA].This result reϐines earlierwork
by Kotlarski (1986) and Cieślinski (2010), and shows that CTି[PA] + DC
is not conservative over PA, since as demonstrated byWcisło and Łełyk [3],

CT଴[PA] proves Con(PA) (and much more).

• Recent joint work [2] of Łełyk, Wcisło, and the author on the feasible re-

ducibility of CTି[PA], and certain other canonical untyped truth theories

to PA. In particular, this shows that CTି[PA] does not exhibit superpolyno-
mial speed-up over PA, in sharp contrast to the superexponential speed-up

of CTି[B] over B for ϐinitely axiomatizable B.
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Emil Jeřábek

Arithmetical and propositional reϐlection principles

Reϐlection principles are established as an important tool in the study of ϐirst-

order theories of arithmetic. In the realm of strong fragments of arithmetic

(say, above 𝐼Δ଴ + EXP), this means ϔirst-order reϔlection principles expressing the

soundness of subsystems of arithmetic itself with respect to formulas of bounded

complexity. First-order reϐlection schemata come in various shapes depending on

their purpose (uniform reϐlection principles, local reϐlection principles, reϐlection

rules), and since they operate inside with the same language as outside, they can

be iterated.

This approach is of no use for weak theories of arithmetic such as fragments

of bounded arithmetic 𝐼Δ଴ + Ωଵ, since these theories cannot even prove the

consistency of the base theory 𝑄. However, fragments of bounded arithmetic can

be analyzed using reϐlection principles for propositional proof systems, expressing

that tautologies of bounded complexity provable in the system are true under

Boolean assignments. Using translation of bounded formulas into propositional

language, these reϐlection principles can be themselves expressed by sequences

of propositional tautologies.

In this talk, I will review basic properties of reϐlection principles in both setups,

highlighting what makes them similar and what makes them different.



Reflection Principles and Modal Logic 105

Fedor Pakhomov

A weak set theory that proves its own consistency

We introduce a weak set theory Hழఠ. A formalization of arithmetic on ϐinite

von Neumann ordinals gives an embedding of arithmetical language into this

theory. We show thatHழఠ proves a natural arithmetization of its own Hilbert-

style consistency. Unlike the previous examples (due to Willard [2]) of theories

proving their own consistency, Hழఠ appears to be sufϐiciently natural.

The theory Hழఠ is inϐinitely axiomatizable and proves existence of all individual

hereditarily ϐinite sets, but at the same time all its ϐinite subtheories have ϐinite

models. Therefore, our example avoids the strong version of Gödel’s second

incompleteness theorem (due to Pudlák) that asserts that no consistent theory

interpretingRobinson’s arithmeticQproves its own consistency [1]. To show that

Hழఠ proves its own consistency we establish a conservation result connecting

Kalmar elementary arithmetic EA and Hழఠ.

The theory Hழఠ is a ϐirst-order theory in the signature with equality=, member-

ship predicate ∈, and unary function V. Axioms of Hழఠ:

1. 𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) (Extensionality);

2. ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ∧ 𝜑(𝑧)) (Separation);

3. 𝑦 ∈ V(𝑥) ↔ (∃𝑧 ∈ 𝑥)(𝑦 ⊆ V(𝑧)) (Deϐining axiom for V);

4. ∃𝑥 Nat௡(𝑥), for all 𝑛 ∈ ℕ (all individual natural numbers exist).

Here the formulasNat௡(𝑥) expressing the fact that 𝑥 is the ordinal 𝑛 are deϐined

in the usual manner: Nat଴(𝑥) is ∀𝑦 𝑦 ∉ 𝑥 and Nat௡ାଵ(𝑥) is ∀𝑦 (Nat௡(𝑦) →
∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 = 𝑦 ∨ 𝑧 ∈ 𝑦)). The intended interpretation of the function V is

V ∶ 𝑥 ⟼ Vఈ, where 𝛼 is least ordinal such that 𝑥 ⊆ Vఈ.
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Albert Visser

Löb’s logic and the Lewis arrow

My talk reports on research in collaboration with Tadeusz Litak.

In the constructive context, the Lewis arrow does not reduce to the modal box.

Moreover, a slight generalization of the Lewis arrow, has contraposed inter-

pretability as a special case.

I will discuss versions of Löb’s logic with the Lewis arrow. I will address:

• the deϐinition of various systems,

• Kripke semantics,

• explicit ϐixed points,

• uniform interpolation (which is at present only known for two special

systems),

• arithmetical interpretations.

At the end of the talk, I will brieϐly present some questions for further research.
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Mahfuz Rahman Ansari*, A V Ravishankar Sarma

Constraints on selection function: A critique of Lewis-
Stalnakers semantics for counterfactuals

Counterfactual conditionals are the special kind of conditional sentences𝑃2 → 𝑄,

in which the antecedent is always false. Counterfactual conditionals are state-

ments, asserting that something happens under certain conditions, which are

presupposed not to be satisϐied in reality. The semantics of counterfactuals has

been a challenging task for philosophers, since antiquity. Themost celebrated and

poplar approach in this direction is the Stalnaker (1968)-Lewis’ (1973) possible-

worlds semantics. According to Lewis-Stalnaker’ semantics, a counterfactual

𝑃2 → 𝑄 holds when in the nearest possible world with respect to the antecedent,

the consequent is also true. This approach is based on the comparative similarity

of possible worlds. Despite its mathematical elegance, this approach is not free

from problems. There is a gap between intuitive notion of similarity of possible

worlds and the criteria provided by Lewis. In this paper, we restrict ourselves to

the counterfactual conditionals in which the antecedents are treated as action

deliberations. We emphasize on additional constraints that are to be imposed on

the selection function that picks the nearest possible world. The present study

aims to explore the constraints on selection function and tries to reduce the

gap between intuitive understanding of counterfactuals and formal analysis of

counterfactuals, based on similarity of possible worlds.
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Sergey Drobyshevich*, Sergei Odintsov

Towards a classiϐication of algebraizable FDE-based
modal logics

In [3] a ϐirst attempt to compare different known FDE-based modal logics was

made; this work motivated a classiϐication of FDE-based modal logics developed

in [1, 2]. The main ideas behind this classiϐication were (i) that every modal

operator ∘ over FDE can be analysed in terms of two modal behaviours— one

corresponding to asserting ∘𝜑 and one corresponding to rejecting ∘𝜑 and (ii) that

one can study these two behaviours independently from each other in a mod-

ular way. Accordingly, four basic partially-deϔined modalities were introduced:

∀ା (∃ି) and ∃ା (∀ି) correspond to asserting and rejecting2𝜑 (3𝜑) over FDE,

respectively. They are partially-deϐined insofar only one of two behaviours is

explicitly deϐined for them.

In this work we investigate algebraic semantics for these basic modalities. As it

turns out, the minimal systems are not algebraizable and we are forced to extend

them slightly. This way we obtain four systems closed under rules:

𝜑 ⊣⊢ 𝜓

∘𝜑 ⊣⊢ ∘𝜓
,

∼ 𝜑 ⊣⊢∼ 𝜓

∼ ∘𝜑 ⊣⊢∼ ∘𝜓
.

We show that they are indeed algebraizable and investigate their equivalent

algebraic semantics. We also consider relational semantics for these systems,

which involve frames with one accessibility relation and one neighbourhood

function to model each modality.

Both authors acknowledge the support by the Russian Foundation for Basic

Research, project No 18-501-12019.
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Joseph Boudou, Martínn Diéguez, David Fernández-Duque*

A Complete Intuitionistic Temporal Logic for Topologi-
cal Dynamics

Linear temporal logic (𝐿𝑇𝐿) is a poly-modal propositional logic which allows

for the representation of various tenses including ∘ (‘next’) and3 (‘eventually’),

and dynamical (topological) systems are pairs (𝑋, 𝑆) consisting of the action of a

continuous function 𝑆∶ 𝑋 → 𝑋 on the topological space 𝑋. Dynamical systems

naturally provide semantics for the language of 𝐿𝑇𝐿 by using the function 𝑆 to

interpret ∘,3 and the topological structure to interpret implication, thus giving

rise to an intuitionistic variant of linear temporal logic. Under this interpretation,

it is natural to enrich the language of 𝐿𝑇𝐿with a universal modality, ∀.

In our talk we will show how this language is expressive enough to capture non-

trivial phenomena such as Poincaré recurrence and minimality. We will then

introduce a ‘minimal’ axiomatization 𝐼𝑇𝐿଴3∀ for intuitionistic temporal logic and

discuss a few (in)completeness results:

1. The logic 𝐼𝑇𝐿଴3∀ with tenses ∘,3, ∀ is sound and complete for

(a) the class of all dynamical systems, and

(b) the set of all dynamical systems based on the rational numbers,ℚ.

In contrast, 𝐼𝑇𝐿଴3∀ is not complete for interpretations based onℝ௡.

2. The ∀-free fragment 𝐼𝑇𝐿଴3 is complete for

(a) the class of all ϐinite dynamic topological systems,

(b) the class of dynamical systems based overℝ௡ for any ϐixed 𝑛 ≥ 2, and

(c) the class of dynamical systems based on the Cantor space.

However, 𝐼𝑇𝐿଴3 is incomplete for the real line.

Finally, we show that2 (‘henceforth’) is not deϐinable in terms of3 and discuss

some problems and possible approaches to including2 in our logic.
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Emanuele Frittaion

The uniform reϐlection principle in second order arith-
metic

I will discuss the full uniform reϐlection principle in the context of second order

arithmetic. I will show how by formalizing a minimum of inϐinitary proof theory

(𝜔-logic) in a sufϐicietly strong fragment of second order arithmetic, such as the

reverse mathematics base system known as RCA଴ (recursive comprehension

axiom), one can give a proof of the following folklore result. Let 𝑇଴ be a ϐinitely

axiomatizable subsystem of second order arithmetic as strong as RCA଴. Then

adding the uniform reϐlection principleRFN(𝑇଴) is equivalent to adding full induc-

tion. On the other hand, adding the uniform reϐlection principle RFN(𝑇), where 𝑇

is 𝑇଴ together with full induction, is equivalent to adding full transϐinite induction

up to 𝜀଴
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Luciana Garbayo

Dependence logic & medical guidelines disagreement:
an informational (in)dependence analysis

Medical guidelines disagreement is a more general problem in medical decision

science whereas medical experts hold true distinct guidelines for diagnostic

and/or treatment for same patient proϐiles. Such state of affairs is associated

with disagreement in the interpretation of the body of science that supports

guidelines for diagnostic and/or treatment decisions by different accreditedmed-

ical societies. In order to better support medical decision making and augment

clinical decision support, a formal semantics of such disagreement has been ϐirst

suggested with a path to reason with partially contradictory information using

natural language processing techniques, while distinguishing formally disagree-

ment from contradictions with propositional calculus and lattice theory (1). This

account has been further developed with sheaves, to provide a computational

topological treatment for the representation of multiple sources of information

and data transformation with mappings (2). In order to enrich this logical no-

tion of disagreement with informational (in)dependence (43), plural states S

are considered for multiple forms of interactions between agents, dependent

and independent variables and guidelines statements, while a team semantics is

explored, within a dependence logic platform.
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Joost Joosten

Hyperarithmetical Turing progressions

Turing progressions arise by iteratedly adding consistency statements over a

sound base theory. Schmerl employed Turing progressions over a weak base

system in [2] to gauge the (consistency) strength of certain substantially stronger

formal systems thus giving rise to ordinal analyses for these systems. Beklemishev

showed in [1] how such analyses can be presented and in large part performed

within polymodal provability logics. Beklemishev’s method employed arithmetic

consistency notions only. In this talk we dwell on new techniques that have been

developed to take this further to include hyperarithmetical consistency notions.
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Taishi Kurahashi

Derivability conditions and the second incompleteness
theorem

Let 𝑇 be any recursively axiomatized consistent extension of Peano arithmetic.

In his famous paper, Gödel showed that the consistency statement 𝐶𝑜𝑛் ≡

∃𝑥(𝐹𝑚𝑙(𝑥)∧𝑃𝑟்(𝑥)) cannot be proved in 𝑇. In the second volume of Grundlagen

der Mathematik, Hilbert and Bernays proposed a set of conditions for provability

predicates which is sufϐicient for a version of the second incompleteness theorem.

That is, if 𝑃𝑟்(𝑥) is a Σଵ provability predicate satisfying their conditions, then

𝐶𝑜𝑛଴் ≡ ∀𝑥(𝐹𝑚𝑙(𝑥) ∧ 𝑃𝑟்(𝑥) → ¬𝑃𝑟்(¬𝑥)) cannot be proved in 𝑇. Löb [4]

found another set of conditions, and proved the so-called Löb’s theorem under

his conditions. Löb’s theorem immediately implies that 𝐶𝑜𝑛ଵ் ≡ 𝑃𝑟்(⌜0 ≠ 0⌝)

cannot be proved in 𝑇. Notice that for provability predicates, 𝐶𝑜𝑛଴் implies 𝐶𝑜𝑛ଵ்,

and 𝐶𝑜𝑛ଵ் implies 𝐶𝑜𝑛்.

Related to derivability conditions and the second incompleteness theorem, we

proved the following results.

1. There are new sets of derivability conditions which are sufϐicient for un-

provability of 𝐶𝑜𝑛଴்.

2. If a Σଵ provability predicate 𝑃𝑟்(𝑥) satisϐies the following condition 𝐵௎ଶ ,

then 𝑃𝑟்(𝑥) satisϐies provable Σଵ-completeness.

𝐵௎ଶ ∶ If 𝑇 ⊢ 𝜑(𝑥⃗) → 𝜓(𝑥⃗), then 𝑇 ⊢ 𝑃𝑟்(⌜𝜑( ⃗̇𝑥)⌝) → 𝑃𝑟்(⌜𝜓( ⃗̇𝑥)⌝)

This is an improvement of Buchholz’s observation [1].

3. Hilbert and Bernays’s conditions and Löb’s conditions are mutually incom-

parable.

4. Both of Hilbert and Bernays’ conditions and the global versions of Löb’s

conditions are not sufϐicient for 𝑇 ⊬ 𝐶𝑜𝑛். This shows that both of Hilbert-

Bernays’ conditions and Löb’s conditions donot accomplishGödel’s original

statement of the second incompleteness theorem.
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Mateusz Łełyk

Nonequivalent axiomatizations of PA and
the Tarski Boundary

We study a family of axioms expressing

”All axioms of PA are true.” (∗)

where PA denotes Peano Arithmetic. More precisely, each such axiom states that

all axioms from a chosen axiomatization of PA are true.

We start with a very natural theory of truth CTି(PA)which is a ϐinite extension of

PA in the language of arithmetic augmented with a fresh predicate 𝑇 to serve as a

truth predicate for the language of arithmetic. Additional axioms of this theory

are straightforward translations of inductive Tarski truth conditions. To study

various possible ways of expressing (∗), we investigate extensions of CTି(PA)

with axioms of the form

∀𝑥 ൫𝛿(𝑥) → 𝑇(𝑥)൯. (∗∗)

In the above (and throughout the whole abstract) 𝛿(𝑥) is an arithmetical Δ଴
formula which is proof-theoretically equivalent to the standard axiomatization

of PA with the induction scheme, i.e. the equivalence

∀𝑥൫Provఋ(𝑥) ≡ ProvPA(𝑥)൯.

is provable in 𝐼Σଵ. For every such 𝛿, the extension of CTି(PA) with axiom (∗∗)

will be denoted CTି[𝛿].

In particular we are interested in the arithmetical strength of theories CTି[𝛿].

The ”line” demarcating extensions of CTି(PA)which are conservative over PA

from the nonconservative ones is known in the literature as the Tarski Boundary.

So far, there seemed to be the least (in terms of deductive strength) natural

extension of CTି(PA) on the nonconservative side of the boundary, whose one

axiomatization is given by CTି(PA) and Δ଴ induction for the extended language

(the theory is called CT଴). In contrast to this, we prove the following result:

Theorem. For every r.e. theory Th in the language of arithmetic the following are

equivalent:

1. CT଴ ⊢ Th

2. there exists 𝛿 such that CTି[𝛿] and Th have the same arithmetical conse-

quences.
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Secondly, we use theories CTି[𝛿] to measure the distance between CTି(PA) and

the Tarski Boundary. We prove

Theorem. There exists a family {𝛿௙}௙∈ఠழఠ such that

1. for every 𝑓 ∈ 𝜔ழఠ, CTି[𝛿௙] is conservative over PA;

2. if 𝑓 ⊊ 𝑔, then CTି[𝛿௚] properly extends CTି[𝛿௙];

3. if 𝑓 𝑔 then CTି[𝛿௚] ∪ CTି[𝛿௙] is nonconservative over PA.
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Tadeusz Litak

Algebras for preservativity

I overview algebraic aspects of our ongoing work with Albert Visser, both pub-

lished [1] and unpublished, on systems of constructive strict implication a.k.a.

Lewis arrow J [2]. The main motivation to study such systems comes from their

arithmetical interpretations, particularly in terms of Σ଴ଵ-preservativity [3, 4]. After

providing algebraic semantics for the minimal system 𝑖𝐴ି, we give examples of

some pleasant applications. They include:

• An algebraic connection between the arithmetical notion of extension sta-

bility with the standard modal notion of a subframe logic, using Wolter’s

notion of a describable operation [5].

• Examples of non-derivability proofs for simple consequences of the explicit

scheme for de Jongh-Sambin ϐixpoints impossible in Kripke semantics.

• Wolter-Zakharyaschev-style transfer of results and techniques for classical

bimodal logics to their constructive J-counterparts via a suitable variant of

the Gödel-McKinsey-Tarski translation [6].

• A unifying perspective on generalizations of Kripke, Veltman and neigh-

bourhood semantics.
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A. V. Ravishankar Sarma

Belief revision based on abductive reasoning

Belief revison is concerned with the adjustment of currently held beliefs in the

light of new information, particularly when the old belief are contradicting the

new information[3]. This paper discusses the role of abductive reasoning- that

is, reasoning in which explanatory hypotheses are formed and evaluated, in the

change of beliefs. Recent work in artiϐicial intelligence and Philosophical logic

recognizes the importance of abductive reasoning within the process of belief

revision, discovery, creativity. The cental idea of the paper is that agent seek ex-

planations together with its justiϐication into the agent’s current epistemic state

before integrating the new information. In the process, an agent given various

potential explanations, need to chose the best possible explanation amongst the

other competing explanations. We propose an ordering explanations based on

the heirarchies of ordering of beliefs called abductive entrenchment ordering

of beliefs. This is modiϐication of Pagnucco, Nayak and Foo’s model[2], in two

different ways. First it proposes abductive entrenchment based on causal ex-

planation and second, it takes care of some of the semantic propertoes such as

causal properties, causal explanation, causal relevance, with the belief revision

process. The presence or lack of these semantic properties leads to the better

understanding of ordering of explanations. We also insights from Kuhn’s[1] ex-

haustive virtues for the theory choice, including accuracy, consistency, scope,

simplicity and fruitfulness.
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Igor Sedlár

Fixpoints in generalized Lambek calculus

Modal logics with ϐixpoint operators have received considerable attention (e.g.

dynamic logic with program iteration [3] or epistemic logic with common knowl-

edge [2]). In this talk we discuss a positive modal logic with a binary update

modality \ and its ϐixpoint version \∗. The update operator is a generalized ver-

sion of the left division of the (non-associative) Lambek calculus. The difference

is that while the Lambek left division has a relational semantics using a ternary

relation on a set, the generalized \ uses a ternary relation between elements of a

set, subsets of that set and members of that set. Our main technical result is a

complete axiomatization of a relational semantics for the logic and a decidability

result. The technique used to obtain these results is a modiϐication of the tech-

niques used in the case of more standard ϐixpoint operators such as program

iteration or common knowledge. In a sense, this work generalizes the work of

Bimbó and Dunn [1] on relational semantics for the logic of Kleene algebras.
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Ilya Shapirovsky

Satisϐiability problems on sums of Kripke frames

The complexity of satisϐiability problems in modal logic has been systematically

investigated since the 1970s; for many logics (e.g, for the standard systems K, T,

K4, S4) this problem is known to be PSPACE-complete [1], [3].

In many cases, PSPACE upper bound can be established using the operation of

sum of relational structures (Kripke frames) [2]. Given a family (F௜ ∣ 𝑖 in I) of
frames indexed by elements of another frame I (of the same signature), the sum of

the frames F௜’s over I is obtained from their disjoint union by connecting elements

of 𝑖-th and 𝑗-th distinct components according to the relations in I. Given a class

ℱ of frames-summands and a class ℐ of frames-indices, ∑ℐℱ denotes the class of

all sums of F௜’s in ℱ over I in ℐ. In this talk we discuss conditions under which the

modal satisϐiability problem on ∑ℐℱ is polynomial space Turing reducible to the

modal satisϐiability problem on ℱ.
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Amirhossein Akbar Tabatabai

The BHK interpretation: looking through Gödel’s
classical lens

In 1933, Gödel introduced a provability interpretation for intuitionistic proposi-

tional logic, IPC, to establish a formalization for the BHK interpretation, reading

intuitionistic constructions as the usual classical proofs [1]. However, instead of

using any concrete notion of a proof, he used the modal system S4, as a formal-

ization for the intuitive concept of provability and then translated IPC into S4 in

a sound and complete manner. His work then suggested the problem to ϐind the

missing concrete provability interpretation of the modal logic S4 to complete his

formalization of the BHK interpretation via classical proofs.

In this talk, we will develop a framework for such provability interpretations.

We will ϐirst generalize Solovay’s seminal provability interpretation of the modal

logic GL to capture other modal logics such as K4, KD4 and S4. The main idea

is introducing a hierarchy of arithmetical theories to represent the informal

hierarchy of meta-theories of the discourse and then interpreting the nested

modalities in the language as the provability predicates of the different layers

of this hierarchy. Later, we will combine this provability interpretation with

Gödel’s translation to propose a classical formalization for the BHK interpretation.

The formalization suggests that the BHK interpretation is nothing but a plural

name for different provability interpretations for different propositional logics

based on different ontological commitments that we believe in. They include

intuitionistic logic, minimal logic and Visser-Ruitenburg’s basic logic. Finally, as

a negative result, we will ϐirst show that there is no provability interpretation for

any extension of the logic KD45, and as expected, there is no BHK interpretation

for the classical propositional logic.
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Bartosz Wcisło

Topological models of arithmetic

Our talk concerns the following question: which topological spaces 𝑋 can be

equipped with continuous operations 𝑆 ∶ 𝑋 → 𝑋, + ∶ 𝑋ଶ → 𝑋, and × ∶ 𝑋ଶ → 𝑋

such that (𝑋,+, ×, 𝑆) becomes a model of Peano Arithmetic (PA)?

By a result of Malitz, Mycielski, Reinhardt and (independently) Friedman, every

theory in a countable signature has a model 𝑋which is a Polish space such that

all deϐinable relations are Borel (in fact, 𝐹ఙ ∩ 𝐺ఋ). Of course, there are a number

of theories in functional signatures which have interesting topological models,

i.e., models in which operations are continuous. Prominent examples include

topological groups and rings where 𝑋 can be chosen to be a particularly well-

behaved space, for instance a manifold.

Ali Enayat asked whether there exists a Polish space 𝑋 such that PA has a topo-

logical model (𝑋,+, ×, 𝑆). In joint work with Ali Enayat and Joel David Hamkins,

we have obtained some partial results concerning this question. In particular, we

know that any extension of PA has a topological model whose underlying space

are rational numbersℚ. We have also shown that no ϐinite-dimensional manifold

or a compact Hausdorff space can be a model of PA.

If time allows, wewill also present some additional results linking topology to the

arithmetical structure of the model. In particular, it can be shown that in every

cardinality there are topological spaces𝑋which can be endowedwith continuous

operations making themmodels of PA such that not every model of PA (in the

same cardinality) can be obtained as a topological model with the underlying

space 𝑋.

All results in the talk are a joint work of Ali Enayat, Joel David Hamkins, and the

author.
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Larisa Maksimova, Veta Yun*

On strong recognizability of the intuitionistic logic

The problems of recognizability and strong recognizability, perceptibility and

strong perceptibility in extensions of the minimal logic J are studied. These

concepts were introduced in [1]–[3].

Let 𝐿଴ be a J-logic and 𝐿 be a ϐinitely axiomatizable logic containing 𝐿଴. Say that

𝐿 is perceptible over 𝐿଴ if there is an algorithm verifying for any formula 𝐴 if

the inclusion 𝐿଴ + 𝐴 ≥ 𝐿 holds. 𝐿 is strongly perceptible over 𝐿଴ if there is an

algorithm verifying for any ϐinite set 𝑅𝑢𝑙 of axioms and rules of inference if the

inclusion 𝐿଴ + 𝑅𝑢𝑙 ≥ 𝐿 holds.

A logic 𝐿 is recognizable over 𝐿଴ if there is an algorithm verifying for any formula

𝐴 the equality 𝐿଴ + 𝐴 = 𝐿. A logic 𝐿 is strongly recognizable over 𝐿଴ if there is

an algorithm which for every ϐinite system 𝑅𝑢𝑙 of axiom schemes and rules of

inference decides if the logic 𝐿଴ + 𝑅𝑢𝑙 coincides with 𝐿.

Although the intuitionistic logic Int is recognizable over J [1] the problem of its

strong recognizability over J is not yet solved.

We prove that Int is strong recognizable and strong perceptible over the minimal

pre-Heyting logic 𝑂𝑑 = ¬¬(⊥ ⟶ 𝑝) and the minimal well-composed logic

𝐽𝑋 = (⊥ ⟶ 𝑝) ∨ (𝑝 ⟶ ⊥).

In addition let us consider the formula 𝐹 = (⊥ ⟶ 𝑝∨𝑞) ⟶ (⊥ ⟶ 𝑝)∨ (⊥ ⟶ 𝑞).

It is unknown whether the logic 𝐽 + 𝐹 is recognizable over J. We prove that the

formula 𝐹 is perceptible over JX.
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Bahareh Afshari

An inϐinitary treatment of ϐixed point modal logic

Fixed point modal logic deals with the concepts of induction and recursion in a

most fundamental way. The term refers to any logic built on the foundation of

modal logic that features inductively and/or co-inductively deϐined operators.

Examples range from simple temporal logics (e.g. tense logic and linear time

logic) to the highly expressive modal 𝜇-calculus and its extensions.

We explore the proof theory of ϐixed point modal logic with converse modalities,

commonly known as ‘full 𝜇-calculus’. Building on nested sequent calculi for tense

logics [2] and inϐinitary proof theory of ϐixed point logics [1], a cut-free sound

and complete proof system for full 𝜇-calculus is proposed. As a result of the

framework, we obtain a direct proof of the regular model property for the logic

(originally proved in [4]): every satisϐiable formula has a tree model with ϐinitely

many distinct subtrees (up to isomorphism). Many of the results appeal to the

basic theory of well-quasi-orders in the spirit of Kozen’s proof of the ϐinite model

property for 𝜇-calculus [3].

This talk is based on joint work with Gerhard Jäger (University of Bern) and

Graham E. Leigh (University of Gothenburg).
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Olaf Beyersdorff

Proof complexity of quantiϐied Boolean formulas

Proof complexity of quantiϐied Boolean formulas (QBF) studies different formal

calculi for proving QBFs and compares them with respect to the size of proofs.

There exists a number of conceptually quite different QBF resolution calculi, mod-

elling QBF solving approaches, as well as QBF cutting planes, algebraic systems,

Frege systems, and sequent calculi. We give an overview of the relative proof

complexity landscape of these systems.

From a complexity perspective it is particularly interesting to understand which

lower bound techniques are applicable in QBF proof complexity. While some

propositional techniques, such as feasible interpolation [3] and game-theoretic

approaches [4], can be lifted to QBF, QBF proof complexity also offers completely

different approaches that do not have analogues in the propositional domain.

These build on strategy extraction, whereby from a refutation of a false QBF a

countermodel can be efϐiciently constructed. Extracting strategies in restricted

computationalmodels (such as bounded-depth circuits) and exhibiting falseQBFs

where countermodels are hard to compute in the same computational model

leads to lower bounds for the size of proofs in QBF calculi.

We explain this paradigm for prominent QBFs [2, 1]. For QBF Frege systems this

approach even characterises QBF Frege lower bounds by circuit lower bounds [5].

This provides a strong link between circuit complexity and QBF proof complexity,

unparalleled in propositional proof complexity.

This line of research also intrinsically connects to QBF solving as different QBF

resolution calculi form the basis for different approaches in QBF solving such as

QCDCL [7] and QBF expansion [6]. Thus QBF proof complexity provides the main

theoretical tool towards an understanding of the relative power and limitations

of these powerful algorithms.
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Sara Negri

Syntax for semantics

A general method is presented for converting semantics into well-behaved proof

systems. Previous work has shown that the method works in full generality for

Kripke semantics. A number of extensions thereof, covering preferential and

neighbourhood semantics, will be surveyed to highlight its uniform features.
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Pedro Pinto

Proof mining with the bounded functional interpreta-
tion

In the context of the proof mining research program [1][2], the standard tool

guiding the extraction of new information from noneffectivemathematical proofs

is Ulrich Kohlenbach’s monotone functional interpretation. In 2005, a differ-

ent interpretation was introduced by Fernando Ferreira and Paulo Oliva, the

bounded functional interpretation [3]. We will look at some of the ϐirst appli-

cations of this functional interpretation to the proof mining of concrete results.

In [4], we explained how certain sequential weak compactness arguments can

be eliminated from proof mining and used this ideia to obtain a quantitative

version of Bauschke’s theorem from [5]. Bounds on the metastability (in the

sense of Terence Tao) for variants of the proximal point algorithm were obtained

in [6][7][8]. This is partly joint work with Bruno Dinis, Fernando Ferreira and

Laurenţiu Leuştean.
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Thomas Powell

A new application of proof mining in the ϐixed point
theory of uniformly convex Banach spaces

Proofmining is a branch ofmathematical logicwhichmakes use of proof theoretic

techniques to extract quantitative information from seemingly nonconstructive

proofs. In this talk, I present a new application of proof mining in functional

analysis, which focuses on the convergence of the Picard iterates (𝑇௡𝑥)௡∈ℕ for a

class of mappings 𝑇 on uniformly convex Banach spaces whose ϐixpoint sets have

nonempty interior.
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Neil Thapen

Induction, search problems and approximate counting

An important open problem in bounded arithmetic is to show that (in the pres-

ence of an oracle predicate) theories with more induction are strictly stronger

when it comes to proving sentences of some ϐixed complexity. In classical frag-

ments of Peano arithmetic, the Πଵ consequences of theories can be separated by

consistency statements, and theΠଶ consequences by the growth-rate of deϐinable

functions. In bounded arithmetic, neither of these seems to be possible.

I will discuss this problem, and describe some recent progress on it. A particular

instance of the problem is to ϐind a∀Σ௕ଵ sentencewhich is provable in full bounded

arithmetic but not in 𝑇ଶଶ (that is, with induction restricted to Σ௕ଶ formulas). In [1]

we study the theory APCଶ, which allows approximate counting of Σ௕ଵ sets, and

appears to have a broadly similar level of strength to 𝑇ଶଶ . We ϐind such a ∀Σ௕ଵ
sentence separating APCଶ from full bounded arithmetic, using a probabilistic

oracle construction based on a simpliϐied switching lemma.
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Toshiyasu Arai

Some results in proof theory

Let me report on some recent results in proof theory such as the proof-theoretic

strengths of the well-ordering principles and of reϐlecting ordinals.
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Paolo Baldi*, Petr Cintula, Carles Noguera

On classical and fuzzy two-layered modal logics for
uncertainty: translations and proof-theory

Formal systems for modeling uncertainty are often presented as modal logics

with a two-layered syntax, which does not allow for arbitrary nesting of modality.

The lower layer is typically used for representing events, and the upper one for

reasoning about themeasure of uncertainty at hand (probabilities, belief function

etc.).

We are interested in two families of such logics: those employing classical logic

on both layers, and those employing a suitable fuzzy logic in the upper layer.

In [1] we have provided translations between logics of these two families: in

particular, we have shown how a proof system for Łukasiewicz logic, based on

hypersequents [4] can be used to provide an explicit faithful translation of a

classical two-layered logic for probability, introduced in [2] into a corresponding

fuzzy one, introduced in [3]. We will present this result and its implications for

a systematic investigation of two-layered modal logics from a proof-theoretic

perspective, which is still lacking in the literature.
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Libor Behounek

Non-monotonic abstractmultiset consequence relations

By working with sets of premises, Tarski consequence relations automatically

assume certain structural rules. Consequently, most substructural logics can

only be represented Tarski-style as external consequence relations that preserve

designated values. Closer to the spirit of substructural logics, though, are internal

consequence relations, representing the validity of substructural implication

and using multisets, rather than sets, of premises to avoid contraction. This was

the route taken by Avron [1] and recently elaborated by Cintula et al. [2]. The

latter authors generalize Avron’s approach frommultisets to abstract relations

on dually integral Abelian pomonoids, with a Blok–Jónsson monoidal action

representing substitution-invariance. Unlike Avron, though, they assume the

monotonicity of entailment, thereby ruling out internal consequence relations of

weakening-free substructural logics.

In this contribution we explore several non-monotonic generalizations of the

abstract consequence relations of [2], with weaker variants of monotonicity mo-

tivated by the resource-sensitive interpretation of weakening-free substructural

logics. We illustrate general deϐinitions and results on the primary examples of

multiset-to-multiset internal consequence relations for particular substructural

logics, but also, e.g., on entailment between real-valued sets of formulae related

to Pavelka-style logics.

(Běhounek acknowledges support by project LQ1602 of MSƽMTCƽR.)
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Marija Boričić

Suppes–stylenatural deduction system for classical logic

An elegant way to work with probabilized sentences was proposed by P. Suppes

(see [3] and [4]). According to his approach we develop a natural deduction sys-

tem NKprob(𝜀) inspired by Gentzen’s natural deduction system NK for classical

propositional logic. We use a similar approach as in deϐining general probability

natural deduction system NKprob (see [1]). Our system will be suitable for ma-

nipulating sentences of the form 𝐴௡, where 𝐴 is any propositional formula and 𝑛

a natural number, with the intended meaning ’the probability of truthfulness of

𝐴 is greater than or equal to 1 − 𝑛𝜀’, for some small 𝜀 > 0.

For instance, the rules dealing with conjunction looks as follows:

𝐴௠ 𝐵௡

(𝐴 ∧ 𝐵)௠ା௡
(𝐼∧)

𝐴௠ (𝐴 ∧ 𝐵)௡

𝐵௡
(𝐸∧)

and modus ponens:
𝐴௠ (𝐴 → 𝐵)௡

𝐵௠ା௡

The system NKprob(𝜀) will be a natural counterpart of our sequent calculus

LKprob(𝜀) (see [2]).
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Yong Cheng

The limit of incompleteness for Weak Arithmetics

In this work, I examine the limit of incompleteness for Weak Arithmetics w.r.t. in-

terpretation. For a recursively axiomatizable consistent theory 𝑇, I deϐine that

𝐺1 holds for 𝑇 iff for any recursively axiomatizable consistent theory 𝑆, if 𝑇 is

interpretable in 𝑆, then 𝑆 is incomplete. My question is: can we ϐind a weakest

theory w.r.t. interpretation such that 𝐺1 holds for it?

It is often thought that Robinson’s theory R is such a weakest theory. Given

theories 𝑆 and 𝑇, let 𝑆� 𝑇 denote that 𝑇 interprets 𝑆 but 𝑆 does not interpret 𝑇

(𝑆 is weaker than 𝑇w.r.t. interpretation). A natural question is: can we ϐind a

theory 𝑆 such that 𝐺1 holds for 𝑆 and 𝑆� R?

I positively answer this question and show that there are many examples of

such a theory 𝑆 via two different methods. Two main theorems are: (1) for each

recursively inseparable pair, there is a theory such that 𝐺1 holds for it and it is

weaker than Rw.r.t. interpretation; (2) for any Turing degree 0 < d < 0ᇱ, there

is a theory 𝑈 such that 𝐺1 holds for 𝑈, 𝑈� R and 𝑈 has Turing degree d. As two

corollaries, I answer a question from Albert Visser and show that there is no

weakest theory below Rw.r.t. Turing degrees such that 𝐺1 holds for it.
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José Espírito Santo, Gilda Ferreira*

An embedding of IPC into Fat not relying on instantia-
tion overϐlow

Since 2006 [2], it is known that intuitionistic proposicional calculus IPC can

be embedded into system Fat – a restriction of Girard’s polymorphic system

F to atomic universal instantiations. Such embedding relies on the Russell-

Prawitz’s [4] translation of the connectives bottom and disjunction, ⊥ ∶= ∀𝑋.𝑋

and 𝐴 ∨ 𝐵 ∶= ∀𝑋.((𝐴 → 𝑋) ∧ (𝐵 → 𝑋)) → 𝑋, and on the phenomenon of in-

stantiation overϔlow [3] - the possibility of deriving in Fat the instantiation of

these two universal formulas by any (not necessarily atomic) formula. In the

present talk we show that there is an alternative (reϐined) embedding of IPC into

Fat, still based on the Russell-Prawitz’s translation of connectives, but based

on the admissability of disjunction and absurdity elimination rules, rather than

instantiation overϐlow. Such alternative embedding works as well as the origi-

nal embedding at the levels of provability and preservation of proof reduction

(both embeddings preserve 𝛽𝜂-conversions and map commuting conversions to

𝛽-equality) but the alternative embedding is more economical than the original

one in terms of the size of the Fat proofs and the length of Fat simulations.

Details of this work can be found on [1].
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Marta Gawek*, Agata Tomczyk

Translation of Sequent Calculus into Natural Deduction
for Sentential Calculus with Identity

Suszko’s Sentential Logic with Identity (SCI) has many unapparent properties,

which have not been studied too closely. One of the properties that makes SCI
worthwile is that even though it contains an intensional identity connective, the

logic itself is extensional. So far, proof methods established for SCI are Hilbert-
style system, sequent calculi (SC) (introduced by both [1] and [2]), dual-tableau

system by [4] and DFC-algorithms by [5]. In our talk we will present a natural

deduction (ND) system for SCI, being the result of employing Negri’s strategy

[3] of translating SC rules intoND. Rephrasing of logical rules of SC intoND is

executed by auxiliarily expressingND rules using notation appropriate to SC.
For a given rule of inference 𝑅ଵ it is done so by replacing every formula 𝐴 inND’s
derivation by formula Γ → 𝐴. Then, the arrow stands for derivability relation,

and Γ for a set of open assumptions 𝐴 depends on. Dischargeable assumptions

(𝐴௠, 𝐵௡, and so forth) should be expressed as 𝐴௠, Δ → 𝐶. It should be read as:

Δ being any (possibly empty) context, and 𝐶 being the main formula we aim to

infer. We will discuss one set of translated rules, which embraces left SCI-rules,
as well as admissible rules encompassing transitivity and symmetry. Proofs of

soundness and completeness will be discussed as well.

Bibliography

[1] SğĞĒĔēCčđĊćĔĜĘĐĎ, Sequent Calculi for SCI, Studia Logica, vol. 106 (2018),

no. 3, pp. 541–563.

[2] AĎđĊĊē MĎĈčĆĊđĘ, A uniform proof procedure for SCI tautologies, Studia

Logica, vol. 33 (1974), no. 3, pp. 299–310.

[3] SĆėĆ NĊČėĎ, JĆē ěĔē PđĆęĔ, AĆėēĊ RĆēęĆ, Structural Proof Theory, Cam-

bridge University Press, 2001.
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Iris van der Giessen

Intuitionistic provability logic

The provability logic 𝐺𝐿 is obtained by adding Gödel-Löb’s axiom2(2𝐴 → 𝐴) →

2𝐴 to a Hilbert calculus for classical modal logic 𝐾. Here, 2𝐴 reads as ‘𝐴 is

provable’. Intuitionistic provablity logic is given by 𝐾 restricted to intuitionistic

tautologies together with Gödel-Löb’s axiom. In sequent style, this is obtained by

adding the modal rule

2Γ, Γ,2𝐴 → 𝐴
GLR

Π,2Γ → 2𝐴

to a sequent calculus for intuitionistic propositional logic.

We study two calculi for intuitionistic provability logic. One is the terminating

version of the other. For both systems we prove the admissibility of the cut rule.

One proof uses syntactic methods, the other model-theoretic ones.

One calculus that we study is 𝐺𝐿𝑑𝑟𝑖𝑒. This is the intuitionistic propositional

calculus 𝐺𝑑𝑟𝑖𝑒𝑖 together with 𝐺𝐿𝑅. We obtain cut-admissibility by applying a

syntactic method developed by Valentini [1], using a third induction parameter,

called width.

The other calculus that we consider is 𝐺𝐿𝑣𝑖𝑒𝑟, which is obtained by adding 𝐺𝐿𝑅

to the terminating system 𝐺𝑣𝑖𝑒𝑟𝑖 [2]. Termination of 𝐺𝐿𝑣𝑖𝑒𝑟 is based on a loop-

preventing proof search adopted from results by Bı́lková [3]. Cut-admissibility is

shown using a semantic strategy as in [4].

Using these results, we establish Craig interpolation for intuitionistic provability

logic. One of our aims is to use the terminating calculus 𝐺𝐿𝑣𝑖𝑒𝑟 to prove uniform

interpolation.
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Anna Glenszczyk

Intuitionistc control logic: an overview

Intuitionistic Control Logic (ICL)was introduced byCh. Liang andD.Miller. It adds

to Intuitionistic Propositional Logic elements of classical reasoning by adding a

new logical constant for falsum. Having two different falsum constants enables

to deϐine two distinct negations: an ordinary intuitionistic negation and a new

negation deϐined using the additional falsum, which bears some characteristics

of classical negation. As a result it is possible within ICL to type programming lan-

guage control operators while maintaining intuitionistic implication as a genuine

connective.

In our talk we would like to discuss basic properties of ICL compared with those

of Intuitionistic and Classical Propositional Logics. In particular we will give

description of its monadic fragments. We also show that it is possible to embed

ICL into second order propositional modal logic using a modiϐication of Gödel-

McKinsey-Tarski translation.
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Andrzej Indrzejczak

Admissibility of Cut for Sequent Calculus related to
𝑛-labelled Tableaux

The earliest sequent and tableau calculi for many-valued logics were based on

the application of 𝑛-sided sequents or 𝑛-labelled formulae for each 𝑛-valued logic.

This intuitively natural approach was independently proposed by many logicians

in many variants based on two dual interpretations: veriϐicationist and falsiϐi-

cationist. Although in the setting of two-valued logic a choice of interpretation

has no effect on the shape of rules, in case of 𝑛 > 2 values we obtain signiϐicantly

different calculi. Veriϐicationist interpretation was commonly used by proof-

theoretically oriented logicians and usually formulated by means of 𝑛-sequent

calculi (e.g. Rousseau, Takahashi). Also a general cut elimination theorem for

this kind of calculi was provided by Baaz, Fermüller and Zach. Falsiϐicationist in-

terpretation was preferred by logicians focusing on proof-search and formulated

usually by means of labelled tableux (e.g. Surma, Suchoń, Carnielli). To the best

of our knowledge no constructive proof of cut elimination was provided for the

latter kind of calculi. We present a structured sequent calculi which may serve as

an uniform framework for dealing with both approaches. The main contribution

is a strategy for proving cut admissibility for the calculus based on falsiϐicationist

interpretation.
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Amirhossein Akbar Tabatabai, Raheleh Jalali*

On the logical implications of proof forms

In [1], Iemhoff introduced a syntactic generic form for a certain class of sequent-

style rules that she called focused rules. Intuitively speaking, these rules are

the rules in which only one side of the sequents is active and the consequence

inherits the atomic formulas of the premises. This introduction then led to the

implication that the existence of a terminating sequent calculus consisting of

these focused rules and the usual LJ axioms implies the uniform interpolation

property of the super-intuitionistic logic that the calculus captures. In this talk,

we will strengthen this implication in two different directions. First, we lower

down the base logic from intuitionistic logic to FL௘ to also cover the whole world

of sub-structural logics and secondly we will generalize the syntactic form of

the rules to a more general form in which both sides of the rule are allowed

to be active. The resulting implication then has two major applications. In its

positive side, it provides a uniform method to establish uniform interpolation

property for logics FL௘, FL௘௪, CFL௘, CFL௘௪, IPC, CPC, their K and KD-type modal

extensions and some basic non-normal modal logics including E, M, MC and

MN. On its negative side though, the connection implies that no extension of FL௘
enjoys a certain natural type of terminating sequent calculus unless it has the

uniform interpolation property. This negative reading of the result then leads to

the exclusion of almost all super-intutionistic logics (except seven of them), the

logic K4 and almost all the extensions of the logic S4 (except six of them) from

having such a reasonable calculus.
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Annika Kanckos

Gentzen’s tentative views on constructivism

The development of Gerhard Gentzen’s (1909–1945) thoughts is seen through a

reϐinement of the argument of consistency for Peano Arithmetic. His construc-

tivist views are paired with a pursual of a modiϐied Hilbert’s program. However,

the posthumously published earliest consistency proof from 1935 is by modern

research considered to contain a gap in the argument. This is a weaker criticism

than the original claim that the proof relies on the fan theorem. While Gentzen

reworked the proof using transϐinite induction, not as a given principle, but as a

provable theorem, the gap of the 1935-proof can also be ϐilledwith a bar principle

from Brouwerian intuitionism taken as a basic recursive principle.

But following the thoughts of Gentzen; howdidheprove the theoremof transϐinite

induction in his published consistency proofs, his lectures, and letters? Based on

his constructivist views in the 1936-paper a clear notion of ordinals as a well-

ordering of potential inϐinites is detectable. The basic notion is described as a

recursion on these potential inϐinities. This crucial proof of transϐinite induction

in the 1936-paperwas notmodiϐied in the 1938-version. The reason Gentzen had

for not reworking this part of the proof, which he himself considered essential,

was that he wanted to delay the concretisation and explication of his methods for

proving transϐinite induction until he had succeeded in proving the consistency of

analysis and knew what was needed for such a proof (see [1, p. 248] translating

a letter to Bernays, 17 July 1936). Therefore, Gentzen’s views on constructivism

have to be considered tentative, because his life ended in 1945, before he had

reached his expressed aim.
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Anahit Chubaryan, Artur Khamisyan*

On the proof complexity in two universal proof system
for all versions of many-valued logics

Two types of universal propositional proof systems were described in [1] such

that propositional proof system for every version of MVL can be presented in

both of described forms. The ϐirst of introduced systems (US) is a Gentzen-like

system, the second one (UE) is based on the generalization of the notion of

determinative disjunctive normal form, deϐined by ϐirst coauthor for two-valued

logic [2]. The last type proof systems are weak ones with a simple strategist of

proof search and we have investigated the quantitative properties, related to

proof complexity characteristics in them. In particular, for some class of many-

valued tautologies simultaneously optimal bounds (asymptotically the same

upper and lower bounds) for each of main proof complexity characteristics (size,

steps, space andwidth) were obtained in the second-type systems, considered for

some versions of many-valued logic. Now we investigate the relations between

the main proof complexty measures in both universal systems. We prove that the

systemUE 𝑝−𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑠 the systemUS, but the systemUS does not 𝑝−𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒

the system UE and therefore the systems UE and US do not be 𝑝 − 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 ,

but nevertheless some classes of k-tautologies have the same proof complexities

bounds in both systems, hence we obtain similar results in Gentzen-like system

for the same and for other classes of many-valued tautologies as well.

This work was supported by the RA MES State Committee of Science, in the frames

of the research project Nr. 18T-1B034.
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Satoru Kuroda

On Takeuti-Yasumoto forcing

In late 1996, G.Takeuti and M.Yasumoto [1] published a paper on applications of

forcing method for nonstandard models of bounded arithmetic.

In this talk, we will give a reformulation of their forcing construction in terms of

two-sort bounded arithmetic. In particular, we will construct Boolean algebras

on which generic extensions are models for theories for subclasses of PTIME

such as 𝑁𝐶ଵ or 𝑁𝐿. For instance, let 𝔹 be the Boolean algebra whose underlying

set consists of Boolean formulas over 𝑛 inputs where 𝑛 is a ϐixed nonstandard

number. Then a generic subset of 𝔹 constitutes a generic extension which is a

model of VNCଵ.

It turns out that such generic extensions have close connections with separation

problems of complexity classes in the ground model. Namely let𝔐 ⊧ Vଵ be a

countable nonstandard model which is not closed under exponentiation. Then

we can show that𝔐 ⊧ (𝑁𝐶ଵ = 𝑃) if and only if any generic extension based on

Boolean algebra for 𝑁𝐶ଵ is a model of VP.

We will also discuss the problem of relating propositional provability in the

ground model and the generic extension.
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Martin Maxa

Feasible incompleteness

We will present several conjectures that can be seen as ϐinite counterparts to the

well known theorems that are connected to the foundations of mathematics such

as Gödel’s incompleteness theorems. Their ϐinite versions go already beyond

famous open conjectures in computational theory, for example P ≠ NP.
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José M. Méndez*, Gemma Robles, Francisco Salto

Falsity constants for two independent families of quasi-
Boolean logics

In [1], two families of quasi-Boolean logics are deϐined. One of them is intuition-

istic in character; the other one, dual intuitionistic in nature. Both families are

determined by a Routley-Meyer ternary relational semantics, negation being

interpreted by the “Routley operator” or “Routley star”. The aim of this paper is

to reconsider the two aforementioned families from the point of view of the same

semantics except that now negation will be interpreted bymeans of two different

types of falsity constants following the techniques and strategies discussed in

[2]. We will compare the results obtained with those recorded in [1].
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JoachimMueller-Theys

Multi-valued interpretations

It seemsat least unlikely that there is annaturalway to extend the {0, 1}-interpretations

of PL to arbitrary values from the unit interval [0, 1] ∶= {𝑥 ∈ 𝐼𝑅∶ 0 ≤ 𝑥 ≤ 1}.

For technical reasons, we use the following PL-language: 𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … , ¬𝜙, ⋀Φ,

⋁Ψ, where Φ,Ψ stand for ϔinite sets of formulæ previously built. For instance,

𝜙∧𝜓 ∶= ⋀{𝜙, 𝜓}. 𝑎𝑝𝑣(𝜙) be the set of atomic propositional variables 𝑝 occurring

in 𝜙.

Formulæarebinarily interpreted inwell-knownway, e. g. 𝑉(𝑝) ∈ {0, 1},𝑉ᇱ(¬𝜙) =

1 iff 𝑉ᇱ(𝜙) = 0, 𝑉ᇱ(⋀Φ) = 1 iff 𝑉ᇱ(𝜙) = 1 for all 𝜙 ∈ Φ. 𝑉ᇱ(⋁∅) = 0. ⊧ 𝜙 :iff

𝑉ᇱ(𝜙) = 1 for all 𝑉, whence ⊧ 𝜙 ↔ 𝜓 iff 𝑉ᇱ(𝜙) = 𝑉ᇱ(𝜓).

Let 𝑎𝑝𝑣(𝜙) = {𝑝ଵ, … , 𝑝௡}. Call 𝜅 ∶= ⋀Λ fundamental iff either 𝑝௞ ∈ Λ or¬𝑝௞ ∈ Λ

for every 1 ≤ 𝑘 ≤ 𝑛. 𝜅ଵ ⊥𝜅ଶ if Λଵ ≠ Λଶ. There is an unique set 𝐾 of fundamental

𝜅 such that ⊧ 𝜙 ↔ ⋁𝐾, where 𝛿 ∶= ⋁𝐾 corresponds to (full) DNF.

Now let𝑊(𝑝௞) ∈ [0, 1] be any multi-valued assignment. The MVI or Buchholz

valuation𝑊ᇱ is constructed as follows:

• 𝑊ᇱ(𝑝௞) ∶= 𝑊(𝑝௞),

• 𝑊ᇱ(¬𝑝௞) ∶= 1 −𝑊ᇱ(𝑝௞),

• 𝑊ᇱ(𝜅) ∶= ∏
ఒ∈ஃ𝑊

ᇱ(𝜆),

• 𝑊ᇱ(𝛿) ∶= ∑
఑∈௄𝑊

ᇱ(𝜅),

• 𝑊ᇱ(𝜙) ∶= 𝑊ᇱ(𝛿);

revealing the somehow evident principles used.

Let𝑊.ହ ∶=
ଵ

ଶ
. 𝑊ᇱ

.ହ = 𝜋௉௅ has been paradigm for MVI, whereby PL-probability

𝜋௉௅(𝜙) equals the number of rows with value 1 in the (binary) truth table of 𝜙

divided by 2௡—originating with the Tractatus, probably.

Except for𝜋(⋀Λ) = ∏
ఒ∈ஃ 𝜋(𝜆), the principles used to deϐine𝑊

ᇱ are all properties

of probability functions𝜋 in the sense of probability logic—maybeofmany-valued

logic at all—, and we showed that the literal-independent 𝜋 can be identiϐied

with our𝑊ᇱ.
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However, the nearness to stochastics is deceptive: Consider, e. g., coin toss, where

𝜋(ℎ𝑒𝑎𝑑 ∧ 𝑡𝑎𝑖𝑙) ≠ 𝜋(ℎ𝑒𝑎𝑑) ⋅ 𝜋(𝑡𝑎𝑖𝑙).

After a joint quest, WĎđċėĎĊĉ BĚĈččĔđğ had solved the problem technically.—

Preliminary versions were presented at ASL-APA and UniLog 2018. Thanks to

many participants, Walter Carnielli, Luis Estrada-González, Peter Maier-Borst,

Schafag Kerimova, Andreas Haltenhoff.
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Ranjan Mukhopadhyay

Cut elimination and Restall’s deϐining rules

The Cut Rule as a structural rule used in sequent calculi can be seen – in the

context of justiϐication of deduction – as a recognition of the possibility of indirect

proofs for a sentence having logical constant(s). The demand for Cut Elimination

Theorem for a calculus having logical constants can be seen, from this perspective,

as the demand for showing that if there is an indirect proof for such a sentence

then there is a direct proof for it as well. It can be shown that a calculus which has

Cut Elimination Theorem for it satisϐies Belnap’s (“Tonk, Plonk and Plink”, 1962)

condition of being a conservative extension of the source calculus (S: deducibility

as such) comprising of only structural rules including Cut, and the Axiom of

Identity. Belnap held that an extended calculus having logical constants should

also satisfy the condition of uniqueness.

Restall (“General Existence 1 : Quantiϐication and Free Logic”, 2019) takes se-

quents as proof-theoretic representations of ‘clash’ between assertions and de-

nials of formulae. Restall shows that his Deϐining Rules for the classical ϐirst

order logical constants make way for, not only a conservative extension of S into

Classical First Order Predicate (Free) Logic, but also for an uniquely deϐining

extension as well. Restall shows how the usual left/right sequent rules for the

constants can be restored from the Deϐining Rules. For such a restoration Axiom

of Identity and the Cut rule become necessary for him. This paper observes that

this necessary use of Cut here importantly shows that what is achieved by a Cut

Elimination Theorem for a usual calculus (as discussed above) is achieved by

Restall’s calculus with Deϐining Rules too, but of course without demanding that

Cut be eliminable.

Some ramiϐications of this feature of Restall’s calculus are explored.
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Satoru Niki*, Peter Schuster

On Scott’s semantics for many-valued logic

Scott [2] proposed abstract entailment relations for a semantics in ordered

abelian groups of Łukasiewicz’s many-valued logic. Urquhart [3] had a simi-

lar semantics. By Scott’s entailments one can also represent ideal objects in

abstract mathematics [1].

We now show that Scott’s semantics fails to be sound for the bottom-to-top

direction of Scott’s rule→ଶ, which was left out from Scott’s proof [2, Theorem

3.1]. Indeed,

(𝐴 → 𝐵) → 𝐵 ⊢ 𝐴, 𝐵

is derivable by Scott’s rules but invalid under some interpretation indexed by

[0,∞). Urquhart [4, p. 35] used the same example to show that soundness would

fail for his own semantics if one did not require that every formula have a least

point of validity. No such request ismade by Scott, as it would affect completeness

of his semantics.
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Mattias Granberg Olsson*, Graham Leigh

Partial conservativity of෢ID
𝑖

1 over Heyting arithmetic via
realizability.

The result that intuitionistic෢IDଵ (෢ID
i

ଵ) is conservative over Heyting arithmetic

seems to have been proved only quite recently in a series of papers by Buchholz,

Arai, andRüede and Strahm [3, 1, 4, 2]. We presentwork in progress on a proposal

for a hopefully novel proof of this result, or a substantial part of it, based on

realizability and ideas from formal truth. The idea is to use Gödel’s diagonal

lemma to show that every axiom of some suitable subtheory of෢ID
i

ଵ (e.g. of ϐix-

points only for strongly positive operators) is realizable, that realizability respects

intuitionistic derivability and that realizability is disquotational for certain classes

of formulae (e.g. almost negative formulae).
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Luiz Carlos Pereira*, Edward Hermann Haeusler

New ecumenical systems

Much has been said about the connections between intuitionistic logic and classi-

cal logic. Recently, Prawitz (see [4]) proposed a natural deduction ecumenical

system that puts together classical and intuitionistic logic in a single system, a

codiϐication where classical logic and intuitionistic logic can coexist “in peace”.

The main idea behind this codiϐication is that classical and intuitionist logic share

the constants for conjunction, negation, the absurd, and the universal quantiϐier,

but each has its own disjunction, implication and existential quantiϐier. Similar

ideas are present in Dowek [2] and Krauss [3]. The aims of the present paper are:

(i) to present an ecumenical sequent calculus for classical and intuitionistic logic

and to state some proof theoretical properties of the system, and (ii) to propose a

new ecumenical system, based on the multiple conclusion intuitionistic sequent

calculus FIL ([1]), that combines classical logic and the logic of constant domains,

Bibliography

[1] de Paiva, Valeria and Pereira, Luiz C., A short note on intuitionistic proposi-

tional logic with multiple conclusions , in Manuscrito Rev. Int. Fil., Campinas,

v. 28, n. 2, p. 317-329, jul.-dec. 2005.

[2] Dowek, Gilles, On the deϐinitions of the classical connective and quantiϐiers,

inWhy is this a proof, (eds) E. Haeusler,W. Sanz andB. Lopes, editors, College

Books, UK, pp. 228 - 238, 2015.

[3] Krauss, Peter H., A constructive interpretation of classical mathematics,

Mathematische Schriften Kassel, preprint No. 5/92,1992.

[4] Prawitz, Dag, Classical versus intuitionistic logic, in Why is this a proof, (eds)

E. Haeusler, W. Sanz and B. Lopes, editors, College Books, UK, pp. 15 - 32,

2015.



Proof Theory and Proof Complexity 163

Franco Parlamento*, Flavio Previale, Federico Munini

The subtermproperty for some equality sequent calculi

As for cut elimination (see [3] p. 93), we say that the subterm property holds

for a sequent calculus 𝑆 if there is a “non-trivial” algorithm for transforming a

derivation in 𝑆 of a sequent 𝑆 into a derivation of 𝑆 in the same system, that

contains only terms occurring in 𝑆. We show that the subterm property holds for

the following purely equality calculi based on the structural rules:

1. ∗EQ
ே
(𝑁 for “natural”), which has the reϐlexivity axioms⇒ 𝑡 = 𝑡 and the

multiple congruence rule

Γ ⇒ 𝑟ଵ = 𝑠ଵ … Γ ⇒ 𝑟௡ = 𝑠௡ Γ ⇒ 𝐹[𝑣ଵ/𝑟ଵ, … , 𝑣௡/𝑟௡]

Γ ⇒ 𝐹[𝑣ଵ/𝑠ଵ, … , 𝑣௡/𝑠௡]

2. ∗EQ
஻
(𝐵 for “Birkhoff”), which has the reϐlexivity axioms and the rules:

Γ ⇒ 𝑟 = 𝑠
Γ ⇒ 𝑠 = 𝑟

Γ ⇒ 𝑟 = 𝑠 Γ ⇒ 𝑠 = 𝑡
Γ ⇒ 𝑟 = 𝑡

Γ ⇒ 𝑟ଵ = 𝑠ଵ … Γ ⇒ 𝑟௡ = 𝑠௡

Γ, 𝑃[𝑣ଵ/𝑟ଵ, … , 𝑣௡/𝑟௡] ⇒ 𝑃[𝑣ଵ/𝑠ଵ, … , 𝑣௡/𝑠௡]

Γ ⇒ 𝑟ଵ = 𝑠ଵ … Γ ⇒ 𝑟௡ = 𝑠௡

Γ ⇒ 𝑡[𝑣ଵ/𝑟ଵ, … , 𝑣௡/𝑟௡] = 𝑡[𝑣ଵ/𝑠ଵ, … , 𝑣௡/𝑠௡]

3. ∗EQ, which has the reϐlexivity axioms and the rules

Γ ⇒ 𝐹[𝑣ଵ/𝑟ଵ, … , 𝑣௡/𝑟௡]

𝑟ଵ = 𝑠ଵ, … , 𝑟௡ = 𝑠௡, Γ ⇒ 𝐹[𝑣ଵ/𝑠ଵ, … , 𝑣௡/𝑠௡]

Γ ⇒ 𝐹[𝑣ଵ/𝑟ଵ, … , 𝑣௡/𝑟௡]

𝑠ଵ = 𝑟ଵ, … , 𝑠௡ = 𝑟௡, Γ ⇒ 𝐹[𝑣ଵ/𝑠ଵ, … , 𝑣௡/𝑠௡]

where Γ is a ϐinite multiset of formulae, 𝐹 is a formula, 𝑃 is an atomic formula

different from an equality, 𝑟,𝑠, 𝑡, the 𝑟௜’s and 𝑠௜’s are terms and the 𝑣௜’s are variable

of a ϐirst order language and 𝐸[𝑣௜/𝑡ଵ, … , 𝑣௜/𝑡௡] is used to denote the result of the

simultaneous replacement of the free variables 𝑣ଵ, … , 𝑣௡ by the terms 𝑡ଵ, … , 𝑡௡ in

the formula or term 𝐸.
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Moreover, for ∗EQ
ே
and ∗EQ

஻
cut elimination and the subterm property hold

simultaneously, namely a derivation in any of such systems of a sequent 𝑆 can be

transformed into a cut-free derivation of 𝑆 in the same system, containing only

terms occurring in 𝑆. Although cut elimination holds also for ∗EQ, it does not

hold simultaneously with the subterm property.
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Anahit Chubaryan, Garik Petrosyan*, Sergey Sayadyan

Monotonousand strongmonotonousproperties of some
propositional proof systems for Classical and
Non Classical Logics

For some propositional proof systemof classical and non-classical logicswe inves-

tigate the relations between the lines (𝑡-complexities) and sizes (𝑙-complexities)

of proofs for minimal tautologies, which are not a substitution of a shorter tau-

tology of this logic, and results of a substitutions in them. For every minimal

tautology 𝜑 of ϐixed logic by 𝑆(𝜑) is denoted the set of all tautologies, which are

results a substitution in 𝜑.

Deϐinition. The proof system Φ is called 𝑡-monotonous (𝑙-monotonous), if for

every minimal tautology 𝜑 of this system and for every formula 𝜓 from 𝑆(𝜑)

𝑡஍(𝜑) ≤ 𝑡஍(𝜓) (𝑙஍(𝜑) ≤ 𝑡஍(𝜓)).

Deϐinition. Theproof systemΦ is called 𝑡-strong monotonous (𝑙-strong monotonous),

if for every non-minimal tautology 𝜓 of this system there is such minimal tau-

tology 𝜑 of this system such that 𝜓 belong to 𝑆(𝜑) and 𝑡஍(𝜓) ≤ 𝑡஍(𝜑) (𝑙஍(𝜓) ≤

𝑡஍(𝜑)).

Formerly it is proved in [1], that Frege systems for classical and non-classical

logics are neither 𝑡-monotonous nor 𝑙-monotonous.

Nowweconsider the following systems: propositional resolution systems𝑅𝐶, 𝑅𝐼, 𝑅𝐽

for classical, intuitionistic and Johansson’s logics accordingly, eliminations sys-

tems 𝐸?, 𝐸𝐼, 𝐸𝐽, based on the determinative normal forms for the same logics [2],

and the system 𝐺𝑆, based on generalization of splitting method [3].

Theorem. The systems𝑅𝐶, 𝑅𝐼and𝑅𝐽are 𝑡-strong monotonous (𝑙-strong monotonous),

but neither of them is 𝑡-monotonous (𝑙-monotonous).

Theorem. Each of the systems𝐸𝐶, 𝐸𝐼, 𝐸𝐽and𝐺𝑆 is neither 𝑡-monotonous (𝑙-monotonous)

nor 𝑡-strong monotonous (𝑙-strong monotonous).

Thisworkwas supported by the RAMES State Committee of Science, in the frames

of the research project Nr. 18T-1B034.
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Sam Sanders

Umpteen parallel hierarchies and the Gödel hierarchy

We identify natural theorems of higher-order arithmetic that are independent

of the medium range of the Gödel hierarchy ([7]); this range includes most sub-

systems of second-order arithmetic. We then obtain a number of independent

hierarchies that are parallel to the medium range:

1. The compactness hierarchy based on Cousin’s lemma ([1], 1895).

2. The Lindelöf hierarchy based on Lindelöf’s lemma ([2], 1903).

3. The local-global hierarchy based on Pincherle’s theorem ([6, 5], 1882).

4. The ϐirst net hierarchy based on the monotone convergence theorem for

nets, aka Moore-Smith sequences ([3], 1922).

5. The second net hierarchy based on moduli of convergence for nets.

6. The neighbourhood function hierarchy based onNFP from [4].

7. Variations of these hierarchies.

We work with the Gödel hierarchy based on inclusion and higher-order rather

than second-order systems.

This research is part of my joint project with Dag Normann on the Reverse Mathe-

matics and computability theory of the uncountable (see [4] for an introduction).
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Andrei Sipos

Bounds on strong unicity for Chebyshev approximation
with bounded coefϐicients

In the early 1990s, Kohlenbach [1] pursued a programof applying proof-theoretic

techniques in order to obtain effective results in best approximation theory,

speciϐically moduli of uniqueness and constants of strong unicity. This was part

of a larger research program of Kreisel from the 1950s called ‘unwinding of

proofs’, a program that aimed at applying proof transformations to potentially

non-constructive proofs in ordinary mathematics in order to extract new infor-

mation. The program was later developed by Kohlenbach and his students and

collaborators under the name of ‘proof mining’, extending it to a variety of math-

ematical areas. For more information on the current state of proof mining, see

the book [2] and the recent surveys [3, 4].

What we do is to build up upon the work mentioned above in order to obtain

a modulus of uniqueness for best uniform approximation with bounded coef-

ϐicients, as ϐirst considered by Roulier and Taylor [6]. The main novelty is the

application of Schur polynomials (for which a reference is [5]) to obtain useful

explicit formulas for the interpolation results which are needed in the proof. We

present ways these formulas may be bounded and how those bounds may in turn

be used to derive and verify the desired modulus.

The results presented in this talk may be found in [7].
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Guillermo Badia, Petr Cintula, Andrew Tedder*

Howmuch propositional logic sufϐices for Rosser’s
undecidability theorem?

Rosser [3] famously established that Peano Arithmetic was essentially unde-

cidable against the background of classical ϐirst-order logic, that no consistent

extension of that theory against that logic was decidable, and this result was

extended to Robinson Arithmetic in [4]. We extend the result further by con-

sidering not only a weaker arithmetic theory, but a weaker propositional logic

governing the behaviour of logical connectives. Following Hájek’s paper [2] and

his later unpublished work on fuzzy arithmetics, we prove essential undecidabil-

ity for a version of Robinson arithmetic, with predicates (rather than functions)

to interpret the arithmetic operations, against the background of a propositional

logic with very few logical assumptions. Our logic is much weaker thank the

one used by Hájek; it is a variant of Brady’s BBQ [1] with weakening, in a lan-

guage including falsum (in terms of which negation is deϐined), and a crisp (i.e.,

two-valued) identity predicate. The key logical fact is that, in this system, one

can regain enough of the logical inferential machinery to establish the necessary

arithmetic facts, the key fact being that all the theory-speciϐic predicates can be

shown to be crisp when applied to numerals. Therefore, our result suggests that

essential undecidability is a property largely dependent on the arithmetic theory,

rather than the background propositional logic.
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Andreas Weiermann

A unifying approach to Goodstein principles

The Goodstein principle is arguably the most elementary principle which is

independent of ϐirst order Peano arithmetic. In our presentation we discuss

general properties of Goodstein principles which allow to formulate natural

variants of the Goodstein principle which do not depend an a specifc notion of

base-𝑘 representations of natural numbers. (This is in part joint workwith T. Arai,

D. Fernández Duque, and S. Wainer.)
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Laurent Bienvenu*, Barbara Csima, Matthew Harrison-Trainor

Some questions of uniformity in algorithmic
randomness

The Ω numbers—the halting probabilities of universal preϐix-free machines—

are known to be exactly the Martin-Löf random left-c.e. reals [3, 4, 5]. It was

previously open however whether this equivalence was uniform, i.e., whether

one can uniformly produce, from a Martin-Löf random left-c.e. real 𝛼, a universal

machine 𝑈whose halting probability is 𝛼 (see for example [1]). We answer this

question in the negative. We also answer a question of Barmpalias and Lewis-

Pye [2] by showing that given a left-c.e. real 𝛼, one cannot uniformly produce a

left-c.e. real 𝛽 such that 𝛼 − 𝛽 is neither left-c.e. nor right-c.e.
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Wesley Calvert, Douglas Cenzer, Valentina Harizanov*

Approximately computable equivalence structures

In the past, we investigated computable, computably enumerable, and co-com-

putably enumerable equivalence structures and their isomorphisms [2, 3]. In

recent years, various authors investigated approximate computability for sets

and reducibilities. We introduce and study the notions of generic and coarse

computability for equivalence structures and their isomorphisms[1]. A binary

relation 𝑅 on𝜔 is generically computable if there is a partial computable function

𝜑 ∶ 𝜔ଶ → {0, 1} such that on its domain, 𝜑 coincides with the characteristic

function of𝑅 and, furthermore,𝜑 is deϐined on𝐴×𝐴 for a computably enumerable

set 𝐴 of asymptotic density 1. A set 𝐵 ⊆ 𝜔 is called 𝑅-faithful if, whenever

𝑎𝑅𝑏, then 𝑎 ∈ 𝐵 iff 𝑏 ∈ 𝐵. We say that a generically computable 𝑅 is faithfully

generically computable if the corresponding set 𝐴 is 𝑅-faithful. We show that

every equivalence structure has a generically computable copy. We also show

that an equivalence structure ℰ has a faithfully generically computable copy if

and only if ℰ has an inϐinite faithful substructure with a computable copy.

An equivalence structure ℰ = (𝜔, 𝐸) is coarsely computable if there is a com-

putable binary relation 𝐶 such that 𝐸 and 𝐶 agree on a set 𝐴 ⊆ 𝜔 of asymptotic

density 1. The structure ℰ is faithfully coarsely computable if 𝐴 is both 𝐶-faithful

and 𝐸-faithful. Every equivalence structure has a coarsely computable copy.

Not every faithfully coarsely computable equivalence structure has a faithfully

generically computable copy, and not every equivalence structure has a faith-

fully coarsely computable copy. We also investigate generically and coarsely

computable isomorphisms and how their categoricity differs from computable

categoricity.
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Denis Hirschfeldt

Computability theory, reverse mathematics,
and Hindman’s Theorem

I will discuss results and open problems concerning the computability-theoretic

and reverse-mathematical strength of versions of Hindman’s Theorem, which

states that for any coloring of the natural numbers with ϐinitely many colors,

there is an inϐinite set 𝑆 such that all nonempty sums of distinct elements of 𝑆

have the same color.
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Noah Schweber

More effective cardinal characteristics

A cardinal characteristic of the continuum is a measure of the difϐiculty of ϐinding

a ”sufϐiciently large” set of reals for a given task - for example, the smallest car-

dinality of a set of functions from naturals to naturals such that every function

is dominated by one in the set, or the smallest cardinality of a non-measurable

set. While these are purely set-theoretic objects, they often have computability-

theoretic analogues - degree notions which similarly measure the difϐiculty of

creating sufϐicient sets, but this time from a computational perspective.

In this talk I’ll present work, joint with Ivan Ongay-Valverde, on a new class of

effective cardinal characteristics. They form the effective analogue of problems

such as ”How large does a set of 2-branching subtrees of 3ழఠ have to be in order

for every element of 3ఠ to be a path through one of the trees?” We will show

that on the effective side we get multiple distinct hierarchies, and discuss their

interactions with classical computability-theoretic notions such as computable

traceability.

Time permitting, I’ll also say a bit about another less-studied appearance of car-

dinal characteristics in computability theory - this time, in computable structure

theory (this part joint with Uri Andrews, Joe Miller, and Mariya Soskova).
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Svetlana Aleksandrova*, Nikolay Bazhenov

On Σ0𝑛−classiϐications

In this talk we will discuss the algorithmic complexity of Σ଴௡−classiϐications of

relations on computable structures.

The notion of classiϐication has developed from the notion of Friedberg enumera-

tion. S. Goncharov and J. Knight [1] considered Friedberg enumerations of classes

of structures of some algorithmic complexity. They introduced classiϐication for

a class 𝐾 as a list of structures from 𝐾 that determines each element of 𝐾 up to

isomorphism, or other equivalence.

This approach can also be used to study classiϐications of relations on computable

structures. Σ଴௡−classiϐication here means a classiϐication of relations deϐined in

the said structure by Σ଴௡−formulae. S. Goncharov and N. Kogabaev in [2] have

presented an example of a computable structure without computable Σ଴ଵ−classi-

ϐication of all unary Σ଴ଵ−relations. We give a generalisation of this result.

In particular, we show that, while for a given computable structure𝔐 there is

0(௡)−computable Σ଴௡−classiϐication, for every 𝑛 one can construct a structure

with no 0(௡ିଵ)−computable Σ଴௡−classiϐications.
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Nikolay Bazhenov*, Manat Mustafa, Mars Yamaleev

Computable reducibility, and isomorphisms of
distributive lattices

A standard tool for classifying computability-theoretic complexity of equivalence

relations is provided by computable reducibility. Let 𝐸 and 𝐹 be equivalence

relations on 𝜔. The relation 𝐸 is computably reducible to 𝐹, denoted by 𝐸 ≤௖ 𝐹, if

there is a total computable function 𝑓(𝑥) such that for all 𝑥, 𝑦 ∈ 𝜔,

(𝑥 𝐸 𝑦) ⇔ (𝑓(𝑥) 𝐹 𝑓(𝑦)).

The systematic study of computable reducibility was initiated by Ershov [1, 2].

Let 𝛼 be a computable non-zero ordinal. An equivalence relation 𝑅 is Σ଴ఈ complete

(for computable reducibility) if 𝑅 ∈ Σ଴ఈ and for any Σ଴ఈ equivalence relation 𝐸, we

have 𝐸 ≤௖ 𝑅. The article [3] provides many examples of Σ଴௡ complete equivalence

relations, which arise in a natural way in recursion theory. In [4], it was proved

that for each of the following classes 𝐾, the relation of computable isomorphism

for computable members of 𝐾 is Σ଴ଷ complete: trees, equivalence structures, and

Boolean algebras.

We prove that for any computable successor ordinal 𝛼, the relation of Δ଴ఈ isomor-

phism for computable distributive lattices is Σ଴ఈାଶ complete. We obtain similar

results for Heyting algebras, undirected graphs, and uniformly discrete metric

spaces.
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Michael Stephen Fiske

Quantum Random Self-Modiϐiable Computation

Among the fundamental questions in computer science, at least two have a deep

impact on mathematics. What can computation compute? Howmany steps does

a computation require to solve an instance of the 3-SAT problem? Our work

addresses the ϐirst question, by introducing a newmodel called the ex-machine

[3]. The ex-machine executes Turing machine instructions and two special types

of instructions. Quantum random instructions are physically realizable with a

quantum random number generator [4, 6]. Meta instructions can add new states

and add new instructions to the ex-machine.

A countable set of ex-machines is constructed, each with a ϐinite number of

states and instructions; each ex-machine can compute a Turing incomputable

language, whenever the quantum randomness measurements behave like unbi-

ased Bernoulli trials. In 1936, Alan Turing posed the halting problem for Turing

machines and proved that this problem is unsolvable for Turing machines. Con-

sider an enumeration ℰ௔(𝑖) = (𝔐௜, 𝑇௜) of all Turingmachines𝔐௜ and initial tapes

𝑇௜, each containing a ϐinite number of non-blank symbols. Does there exist an

ex-machine 𝔛 that has at least one evolutionary path 𝔛→ 𝔛ଵ →𝔛ଶ →… →𝔛௠, so

at the𝑚th stage ex-machine 𝔛௠ can correctly determine for 0 ≤ 𝑖 ≤ 𝑚whether

𝔐௜’s execution on tape 𝑇௜ eventually halts? We construct an ex-machine 𝔔(𝑥)

that has one such evolutionary halting path.

The existence of this path suggests that David Hilbert [5] may not have been

misguided to propose that mathematicians search for ϐinite methods to help

construct mathematical proofs. Our reϐinement is that we cannot use a ϐixed com-

puter program that behaves according to a ϐixed set of mechanical rules. Wemust

pursue computational methods that exploit randomness and self-modiϐication

[1, 2] so that the complexity of the program can increase as it computes.
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Natalia Korneeva

Preϐix decidable inϐinitewords for natural subsets of the
set of context-free languages

In the talk we consider preϐix decidable inϐinite words over a ϐinite alphabet for

some classes of languages.

Let ℒ𝒞ℱ be the class of context-free languages, that is, those that are accepted

by ϐinite nondeterministic pushdown automata. Let ℒ஺ௌ, ℒேௌ be the classes of

languages accepted by ϐinite deterministic pushdown automata by ϐinal states

or empty stack respectively. Let ℒℛ be the class of regular languages, that is,

those that are accepted by ϐinite automata. It is known that ℒℛ ⊂ ℒ஺ௌ ⊂ ℒ𝒞ℱ and

ℒேௌ ⊂ ℒ𝒞ℱ. Let ℒ be one of these classes. Also let 𝑃𝑟𝑒𝑓(𝑥) be the set of preϐixes

of inϐinite word 𝑥.

Deϐinition. An inϐiniteword 𝑥 over a ϐinite alphabet Σ is calledℒ-preϐix decidable

if for any language 𝐿 ∈ ℒ over the alphabet Σ the problem 𝐿 ∩ 𝑃𝑟𝑒𝑓(𝑥) ≠ ∅ is

decidable.

The conception of ℒℛ-preϐix decidable inϐinite words was introduced in [1].

The main results of the talk are relations between classes of preϐix decidable

inϐinite words for these classes of languages.

Theorem. The following conditions for an inϔinite word 𝑥 are equivalent:

1. 𝑥 is ℒ𝒞ℱ-preϔix decidable,

2. 𝑥 is ℒ𝒜𝒮-preϔix decidable,

3. 𝑥 is ℒ𝒩𝒮-preϔix decidable.

Theorem. There is a ℒℛ-preϔix decidable inϔinite word that is not ℒ𝒞ℱ-preϔix de-

cidable.

This work was partially funded by RFBR grants (no. 18-01-00574, 18-31-00420).
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Robert Lubarsky

Feedback hyperjump

Under feedback computability, the halting problem relative to the halting problem

is the halting problem: 𝑋 = 𝑋ᇱ. Most, if not all, notions of computation that allow

for an oracle have a feedback version. The ones that have been explored so far are

Turing computability, primitive recursion, and inϐinite timeTuringmachines. This

talk will include an introduction to feedback, and the current state of knowledge

about feedback hyperjump (𝑋 = 𝒪௑).
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Patrick Lutz*, JamesWalsh

Descending sequences of hyperdegrees and the second
incompleteness theorem

It follows from classical results due to Spector that there is no sequence of reals

𝐴଴, 𝐴ଵ, 𝐴ଶ, … such that for each n, 𝐴௡ ≥ு 𝒪
஺௡ାଵ . We will give a new proof of this

result using the second incompleteness theorem. We will then mention how this

fact can be used to give an alternative proof of a result of Simpson and Mummert

on a semantic version of the second incompleteness theorem for 𝛽௡ models.

Both of these results seem to suggest a more general connection between well-

foundedness of certain partial orders and the second incompleteness theorem.

We will mention several other examples of this connection.
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Manat Mustafa, Sergey Ospichev*

About Rogers semilattices of ϐinite families in
Ershov hierarchy

There is a well-known result, that any ϐinite family of c.e. sets has computable

principal numbering[1]. In [2], K.Abeshev shows that there is a ϐinite family of

sets in Ershov hierarchy without Σିଵଶ -computable principal numbering. With

the help of Γ-operator in [3], above result can be generalized to any level(ϐinite

and successor ordinals) of Ershov hierarchy. Here we concentrate our interest to

different types of Σିଵଶ -computable numberings of ϐinite families of Σିଵଶ -sets and

c.e.-sets. The main result is:

Theorem. Let 𝒮 = {𝐴, 𝐵} be any family with 𝐴, 𝐵 are c.e. sets with 𝐴 ⊆ 𝐵 but

𝐴 ⧵ 𝐵 is not c.e., then the Rogers semilatticeℛିଵ
ଶ (𝒮) is isomorphic to family 𝐿௠଴ of

all𝑚-degrees of c.e. sets.

Corollary. Any Σିଵଶ -computable numbering of 𝒮 is equivalent to some computable

numbering of 𝒮.

Second author was supported by RFBR according to the research project 17-01-

00247.
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Michal Tomasz Godziszewski, Dino Rossegger, Luca San Mauro*

Quotient presentations of structures

A c.e. quotient presentation of a structure𝒜 = ⟨𝐴; {𝑓௜}௜∈ூ, {𝑅௝}௝∈௃⟩ consists of a

structure𝒜∗ = ⟨ℕ; {𝑓∗௜ }௜∈ூ, {𝑅
∗
௜ }௝∈௃⟩ and a c.e. equivalence relation 𝐸 (often called

a ceer) such that the functions of𝒜∗ are uniformly computable, the relations of

𝒜∗ are uniformly c.e., 𝐸 is a congruence with respect to𝒜∗, and𝒜∗/𝐸 ≅ 𝒜. 𝐸

realizes 𝒜 if (𝒜∗, 𝐸) is a c.e. quotient presentation of𝒜, for some𝒜∗; otherwise,

𝐸 omits 𝒜. Khoussainov and his collaborators (see, e.g., [2, 3]) investigated, for

familiar classes of structures, which structures are realized by a given ceer 𝐸. We

are interested in the reverse problem, i.e., we study the structure of the following

spectra.

Deϐinition. The spectrum of ceers of a structure𝒜 is the following class of ceers

CeersSp(𝒜) = {𝐸 ∈ Ceers ∶ 𝐸 realizes𝒜}.

During the talk, we will discuss the main motivations for the project and we will

demonstrate theorems relating the program to the study of some distinguished

classes of equivalence relations, such as those considered in [1].
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RumenDimitrov, ValentinaHarizanov, AndreyMorozov, Paul Shafer*, Alexan-

dra Soskova, Stefan Vatev

Cohesive powers of 𝜔

A cohesive power of a computable structure is an effective analog of an ultrapower

of the structure in which a cohesive set plays the role of an ultraϐilter. We study

the cohesive powers of computable copies of the structure (𝜔,<), i.e., the natural

numbers with their usual order. By a computable copy of (𝜔,<), we mean a com-

putable linear order ℒ = (𝐿, ≺) that is isomorphic to (𝜔,<), but not necessarily

by a computable isomorphism. That is, the successor function of ℒmay not be

computable. Our main ϐindings are the following. First, recall that 𝜁 denotes the

order type of the integers, that 𝜂 denotes the order type of the rationals, and that

𝜔 + (𝜂 × 𝜁) (often also written𝜔 + 𝜁𝜂) is familiar as the order type of countable

non-standard models of Peano arithmetic.

1. If ℒ is a computable copy of (𝜔,<)with a computable successor function,

then every cohesive power of ℒ has order type 𝜔 + (𝜂 × 𝜁).

2. There is a computable copy ℒ of (𝜔,<)with a non-computable successor

function such that every cohesive power of ℒ has order type 𝜔 + (𝜂 × 𝜁).

3. Most interestingly, there is a computable copyℒof (𝜔,<) (with anecessarily

non-computable successor function) having a cohesive power that is not

of order type 𝜔 + (𝜂 × 𝜁).
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Marta Fiori Carones, Alberto Marcone, Paul Shafer, Giovanni Soldà*

Reverse Mathematics of some principles related to
partial orders

In this talk, wewill study (some variations of) the following theorem, due to Rival

and Sands ([3]) in the context of Reverse Mathematics:

Theorem. (RS-po) Let 𝑃 be an inϔinite partial order of ϔinite width 𝑘. Then there

is an inϔinite chain 𝐶 of 𝑃 such that for every element 𝑝 ∈ 𝑃, 𝑝 is comparable with 0

or inϔinitely many elements of 𝐶.

In particular, we show thatACA଴, the third of the Big Five subsystems of Zଶ, is
enough to prove RS-po, although no reversal is known to hold. An interesting

result is obtained by ϐixing the width of the partial order 𝑃: if 𝑘 = 3, we prove

that the theorem is equivalent toADS, a combinatorial principle introduced by

Hirschfeldt and Shore in [2], and a widely studied element of the “zoo below

ACA଴” (a very good presentation of which is given for instance in [1]). Notably,

this version of the theoremappears to be the ϐirst naturalmathematical statement

proven to be equivalent toADS.

Finally, some partial results on a stronger version of RS-po, where we require

comparability with 0 or coϔinitely many elements of 𝐶, will be presented.
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Julia Knight, Alexandra Soskova*, Stefan Vatev

Effective coding and decoding structures

Friedman and Stanley introduced Borel embeddings as a way of comparing clas-

siϐication problems for different classes of structures. A Borel embedding of a

class𝐾 in a class𝐾ᇱ represents a uniform procedure for coding structures from𝐾

in structures from 𝐾ᇱ. Many Borel embeddings are actually Turing computable.

When a structure𝒜 is coded in a structureℬ, effective decoding is represented by

a Medvedev reduction of𝒜 to ℬ. Harrison-Trainor, Melnikov, Miller, and Montal-

bán deϐined a notion of effective interpretation of𝒜 in ℬ and proved that this is

equivalent with the existing of computable functor, i.e. a pair of Turing operators,

one taking copies ofℬ to copies of𝒜, and the other taking isomorphisms between

copies of ℬ to isomorphisms between the corresponding copies of𝒜. The ϐirst

operator is a Medvedev reduction. For some Turing computable embeddingsΦ,

there are uniform formulas that effectively interpret the input structure in the

output structure.

The class of undirected graphs and the class of linear orderings both lie on top

under Turing computable embeddings. The standard Turing computable embed-

dings of directed graphs (or structures for an arbitrary computable relational

language) in undirected graphs come with uniform effective interpretations. We

give examples of graphs that are not Medvedev reducible to any linear ordering,

or to the jump of any linear ordering. Any graph can be interpreted in some linear

ordering using computable Σଷ formulas. Friedman and Stanley gave a Turing

computable embedding 𝐿 of directed graphs in linear orderings. We show that

there do not exist 𝐿ఠଵఠ-formulas that uniformly interpret the input graph 𝐺 in

the output linear ordering 𝐿(𝐺).
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Alexey Ryzhkov, Alexey Stukachev*, Marina Stukacheva

Interval semantics for natural languages and effective
interpretability over the reals

Among the methods of formal semantics for natural languages [2], interval se-

mantics is used for the formalization of the concepts of tense and aspect of verb

forms in sentences, as well as for expressing differences between proper and

improper speech [1]. The time scale corresponds to the axis of the real numbers.

The basic verbal constructions of natural languages ​​(Russian, English, German,

etc.) in interval semantics are expressed by ϐirst-order logic formulas over the

ϐield of reals.

We apply the methods of effective interpretability over the reals together with

the methods of interval semantics for verb constructions for analyzing sentences

in Russian.
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Andrey Morozov, Jamalbek Tussupov*

Onminimal elements in theΔ-reducibility on families of
predicates

Fix some countable set 𝑈. By predicate here we mean an arbitrary subset of an

arbitrary ϐinite Cartesian power of 𝑈. We study two kinds of reducibilities on

ϐinite families of predicates.

We say that a predicate 𝑅 is Δ–deϔinable over the predicates 𝑃ଵ, … , 𝑃௞ if 𝑅 itself

and its complement can be deϐined in the structure ⟨𝑈; 𝑃ଵ, … , 𝑃௞⟩ by means of

∃–formulas with parameters.

Let 𝑆଴ = {𝑃଴, … , 𝑃௞ିଵ} and 𝑆ଵ be two ϐinite families of predicates. We say that

𝑆଴ is Δ–deϔinable in 𝑆ଵ, if all the predicates in 𝑆଴ are Δ–deϐinable in 𝑆ଵ and we

denote this fact as 𝑆଴ ⩽
଴
୼ 𝑆ଵ. If 𝑆଴ ⩽

଴
୼ 𝑆ଵ and 𝑆ଵ ⩽

଴
୼ 𝑆଴ then we denote this fact as

𝑆଴ ≡
଴
୼ 𝑆ଵ. The relation⩽

଴
୼ is a preordering,≡

଴
୼ is an equivalence and the quotient

⩽଴
୼/≡଴୼

deϐines an upper semilattice in which the least upper bound of elements

𝑆଴/≡଴୼
and 𝑆ଵ/≡଴୼

equals to (𝑆଴ ∪ 𝑆ଵ)/≡଴୼
and ⊥଴୼ = ∅/≡଴୼

is the smallest element.

Denote this semilattice by 𝐷଴୼ .

If we consider families of predicates up to isomorphism, we arrive at the notion

of Δ–reducibility on families of predicates. We say that a ϐinite family of predicates

𝑆଴ Δ–reduces to a ϔinite family 𝑆ଵ (and denote this as 𝑆଴ ⩽୼ 𝑆ଵ), if there exists a

ϐinite family of predicates 𝑆ᇱ such that 𝑆ᇱ଴ ⩽
଴
୼ 𝑆ଵ and 𝑆

ᇱ
଴ is a conjugate of 𝑆଴ by

means of some permutation on 𝑈.

If 𝑆଴ ⩽୼ 𝑆ଵ and 𝑆ଵ ⩽୼ 𝑆଴ then we denote this fact as 𝑆଴ ≡୼ 𝑆ଵ. The quotient

⩽୼/≡୼ deϐines a structure 𝐷୼, which is a partial order with smallest element

⊥୼ = ∅/≡୼ .

Theorem. 1. The structure 𝐷୼ fails to be an upper semilattice.

2. The families consisting of unary predicates deϔine in𝐷୼ an ideal of order type

𝜔.

Theorem. Each of the structures 𝐷଴୼ ⧵ {⊥
଴
୼} and 𝐷୼ ⧵ {⊥୼} contains 2ఠ minimal

elements.

Both coauthors were partially supported by Committee of Science in Education and

Science Ministry of the Republic of Kazakhstan (Grant No. AP05132349)
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Nikolay Bazhenov, Hristo Ganchev, Stefan Vatev*

Computable embeddings for pairs of linear orderings

Friedman and Stanley [3] introduced the notion of Borel embedding to compare

complexity of the classiϐication problems for classes of countable structures.

Calvert, Cummins, Knight, and Miller [1] (see also [2] and [4]) developed two

notions, computable embeddings and Turing computable embeddings, as effective

counterparts of Borel embeddings.

We follow the approach of [1] and study computable embeddings for pairs of

structures, i.e. for classes𝒦 containing precisely two non-isomorphic structures.

Our motivation for investigating pairs of structures is two-fold. These pairs

play an important role in computable structure theory and also they constitute

the simplest case, which is signiϐicantly different from the case of one-element

classes. It is not hard to show that for any computable structures𝒜 and ℬ, the

one-element classes {𝒜} and {ℬ} are equivalent with respect to computable

embeddings. On the other hand, computable embeddings induce a non-trivial

degree structure for two-element classes consisting of computable structures.

In this talk we will concentrate on the pair of linear orders𝜔 and𝜔⋆. We will use

deg
௧௖
({𝜔,𝜔⋆}) to denote the degree of the class {𝜔, 𝜔⋆} under Turing computable

embeddings. Quite unexpectedly, it turns out that a seemingly simple problem

of studying computable embeddings for classes from deg
௧௖
({𝜔,𝜔⋆}) requires

developing new techniques.

We give a necessary and sufϐicient condition for a pair of structures {𝒜, ℬ} to

belong to deg
௧௖
({𝜔,𝜔⋆}). We also show that the pair {1+ 𝜂, 𝜂 + 1} is the greatest

element inside deg
௧௖
({𝜔,𝜔⋆}), with respect to computable embeddings. More

interestingly, we prove that inside deg
௧௖
({𝜔,𝜔⋆}), there is an inϐinite chain of

degrees induced by computable embeddings.
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Ilya Vlasov

On enumerations of families of sets of computableele-
ments of metric spaces

In this talk, we introduce a deϐinition of enumerations of families of sets of com-

putable elements of a computable Polish space. We have obtained various results

which concerns such enumrations. Namely, the Rogers semilattices of the enu-

merations were described in terms of certain ideals of the Rogers semilattices

of enumerations of families of Σ଴ଶ-sets. A criterion of existence of a universal

enumeration is described.

This work was supported by the Russian Foundation for Basic Research (Grant

18-01-00574).
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Nikolay Bazhenov, Dino Rossegger, Luca San Mauro, Maxim Zubkov*

On bi-embeddable categoricity of linear orders

Given a linear order ℒ and a linear orderℳ bi-embeddable with ℒ, we say that

ℳ is a bi-embeddable copy of ℒ. We study the complexity of embeddings using

the following deϐinition analogous to computable categoricity.

Deϐinition. A countable linear order ℒ is (relatively) Δ଴௡-bi-embeddably categori-

cal if for any bi-embeddable computable (for any bi-embeddable) copyℳ,ℳ and

ℒ are bi-embeddable by Δ଴௡-embeddings (Δ
ℒ⊕ℳ
௡ -embeddings, correspondingly).

Recall, that a linear order is scattered if it has no a suborder of type 𝜂. It is easy to

see, that the question about the level of bi-embeddable categoricity is nontrivial

only for scattered linear orders. We obtain characterization of linear orders with

ϐinite levels of bi-embeddable categoricity.

Theorem. A scattered computable linear order of rank 𝑛 is relatively Δ଴ଶ௡-bi-

embeddably categorical, and is not Δ଴ଶ௡ିଵ-bi-embeddably categorical.

The last author was supported by RFBR grant No. 18-31-00174.
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Damir Zainetdinov

Limitwise monotonic reducibility of sets and
Σ-deϐinability of abelian groups

In my talk I will consider limitwise monotonic reducibility (𝑙𝑚-reducibility for short)

of sets via Σ-deϐinability of abelian groups. The notion of 𝑙𝑚-reducibility of sets via the

limitwise monotonic operator was introduced in [1]. The main results obtained with the

investigation of limitwisemonotonic functions, sets, and sequences can be found in papers

[2, 3].

Deϐinition. Let sets 𝐴, 𝐵 ⊆ ℕ. We deϐine the following family of initial segments:

ℱ(𝐴) = {ℕ � 𝑛 ∶ 𝑛 ∈ 𝐴}.

Then 𝐴 ≤௟௠ 𝐵 ⟺ ℱ(𝐴) ⊑ஊ ℱ(𝐵), where deϐinition of Σ-reducibility on the families can

be found in [4].

We consider an abelian group 𝐺(𝐴) in the following form:

𝐺(𝐴) =ໄ

௡∈஺

൭ໄ

௠∈ℕ

ℤ௣೙൱ ,

where ℤ௣೙ – cyclic group of order 𝑝௡ and 𝑝 is prime.

The main result of my talk is to obtain a description of the 𝑙𝑚-reducibility of sets on the

language of Σ-deϐinability of abelian groups.

Theorem. The familyℱ(𝐴) isΣ-deϔinable in the hereditarily ϔinite superstructureℍ𝔽(𝐺(𝐴))

over the group 𝐺(𝐴).

Theorem. Let 𝐴, 𝐵 ⊆ ℕ. Let 𝐺(𝐴) and 𝐺(𝐵) be abelian groups deϔined for sets 𝐴 and 𝐵,

respectively. Then 𝐴 ≤௟௠ 𝐵, if and only if the group 𝐺(𝐴) is Σ-deϔinable in the hereditarily

ϔinite superstructureℍ𝔽(𝐺(𝐵)).

The reported study was funded by Russian Foundation for Basic Research according to

the research projects No. 18-01-00574, 18-31-00420.
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Michael Beeson

On the notion of equal ϐigures in Euclid

Euclid uses an undeϐined notion of “equal ϐigures”, towhich he applies the common notions

about equals added to equals or subtracted fromequals. Whenwe formalized Euclid Book I

for computer proof-checking, we had to add ϐifteen axioms about undeϐined relations

“equal triangles” and “equal quadrilaterals” to replace Euclid’s use of the common notions.

In this paper, we offer deϐinitions of “equal triangles” and “equal quadrilaterals, that Euclid

could have given, and prove that they have the required properties, by proofs Euclid could

have given. This removes the need for adding new axioms.
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Pierre Boutry

Towards an independent version of Tarski’s system of
geometry

In 1926-1927, Tarski designed a set of axioms for Euclidean geometry which reached its

ϐinal form in amanuscript by Schwabhäuser, Szmielew and Tarski in 1983. The differences

amount to simpliϐications obtained by Tarski and Gupta. Gupta presented an independent

version of Tarski’s system of geometry, thus establishing that his version could not be

further simpliϐied without modifying the axioms. To obtain the independence of one of

his axioms, namely Pasch’s axiom, he proved the independence of one of its consequence:

the previously eliminated symmetry of betweenness. However, an independence model

for the non-degenerate part of Pasch’s axiom was provided by Szczerba for another ver-

sion of Tarski’s system of geometry in which the symmetry of betweenness holds. This

independence proof cannot be directly used for Gupta’s version as the statements of the

parallel postulate differ.

In this talk, we present our progress towards obtaining an independent version of a variant

of Gupta’s system. Compared to Gupta’s version, we split Pasch’s axiom into this previously

eliminated axiom and its non-degenerate part and change the statement of the parallel

postulate. To select this statement, our previous paper, Parallel postulates and continuity

axioms: a mechanized study in intuitionistic logicusing Coq, proved to be useful so we detail

some of these results.
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John Mumma

Diagrams and parallelism

The topic of my talk is how the relation of parallelism is represented in diagrammatic

proofs of plane elementary geometry. I will discuss how the boundedness of diagrams

motivates a constructive conception of the relation, and consider how the formal system

presented in [1] can be modiϐied in accord with this conception.
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Gianluca Paolini

First-order model theory of free projective planes

Weprove that the theory of open projective planes is complete and strictly stable, and infer

from this that Marshall Hall’s free projective planes (𝜋௡ ∶ 4 ≤ 𝑛 ≤ 𝜔) are all elementary

equivalent and that their common theory is strictly stable and decidable, being in fact the

theory of open projective planes. We further characterize the elementary substructure

relation in the class of open projective planes, and show that (𝜋௡ ∶ 4 ≤ 𝑛 ≤ 𝜔) is an

elementary chain. We then prove that for every inϐinite cardinality 𝜅 there are 2఑ non-

isomorphic open projective planes of power 𝜅, improving known results on the number

of open projective planes. Finally, we characterize the forking independence relation in

models of the theory and prove that 𝜋ఠ is strongly type-homogeneous.
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Piotr Blaszczyk

Axioms forEuclid’s ElementsbookV, their consequences
and some independence results

Euclid’s Elements, book V develops the theory of proportions as applied to magnitudes; it

is the key theory for understanding Greek and early modern mathematics. By formalizing

its deϐinitions and the tacit assumptions behind its proofs, we reconstruct book V with its

25 propositions as an axiomatic theory.

The general term 𝜇𝜀𝛾𝜀𝜃𝑜𝜍 covers line segments, triangles, convex polygones, circles,

solids, angles, and arcs of circles. We formalize Euclid’s magnitudes of the same kind (line

segments being of one kind, triangles being of another, etc.) as an additive semigroup with

a total order, (𝑀,+,<), characterized by the following ϐive axioms:

E1 (∀𝑥, 𝑦)(∃𝑛 ∈ ℕ)[𝑛𝑥 > 𝑦],

E2 (∀𝑥, 𝑦)(∃𝑧)[𝑥 < 𝑦 ⇒ 𝑥 + 𝑧 = 𝑦],

E3 (∀𝑥, 𝑦, 𝑧)[𝑥 < 𝑦 ⇒ 𝑥 + 𝑧 < 𝑦 + 𝑧],

E4 (∀𝑥)(∀𝑛 ∈ ℕ)(∃𝑦)[𝑛𝑦 = 𝑥],

E5 (∀𝑥, 𝑦, 𝑧)(∃𝑣)[𝑥 ∶ 𝑦 ∶∶ 𝑧 ∶ 𝑣].

We show that E4 follows from E1-E3, E5; we prove the independence of the axioms E1, E2,

E3. We discuss the use of E1 in the proposition V.8; we show that E1 does not follow from

the Dedekind completeness axiom (although it does follow from the completeness axiom

in an orderd group). We interpret Greek proportion in an Archimedean ordered ϐield, and

offer an algebraic interpretation of the axiom The whole is greater than the part.

We present schemes of Euclid’s propositions; they consist of algebraic formulae represent-

ing sequences of (grammatical) sentences, signs representing phrases that occur in the

Greek text and references to the axioms, deϐinitions, and other propositions. We discuss

under what assumptions these schemes could be turned into modern proofs. Finally, we

present algebraic paraphrases of all 25 propositions of book V as derived from the axioms

E1-E5.
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Marlena Fila*, Piotr Blaszczyk

Limits of diagrammatic reasoning

We challenge theses of [3] and [4] concerning the Intermediate Value Theorem (IVT); we

argue that a diagrammatic reasoning is reliable provided one ϐinds a formula representing

the diagram.

IVT states: If (𝐹, +, ⋅, 0, 1, <) is an ordered ϐield, 𝑓 ∶ [0, 1] ↦ 𝐹 is a continuous map such

that 𝑓(0)𝑓(1) < 0, then 𝑓(𝑥) = 0, for some 𝑥 ∈ (0, 1). An accompanying diagram,

diag(IVT), depicts a graph of 𝑓 intersecting a line (𝐹,<), as the function values differ in

sign.

(a) In [3], Brown argues that diag(IVT) guarantees the existence of an intersection point.

(b) In [4], Giaquinto argues that diag(IVT) do not guarantee the existence thesis, since

continuous functions include non-smooth functions that ϐind no graphic representations.

(ad a) We show that IVT is equivalent to Dedekind Cuts principle (DC): If (𝐴, 𝐵) is a

Dedekind cut in (𝐹,<), then

(∃!𝑐 ∈ 𝐹)(∀𝑥 ∈ 𝐴)(∀𝑦 ∈ 𝐵)[𝑥 ≤ 𝑐 ≤ 𝑦].

We also provide a graphic representation for DC.

This equivalence justiϐies the claim that IVT is as obvious as DC. There is, however, no

relation between diag(IVT) and diag(DC), all the more between diag(IVT) and the formula

DC. Thus, Brown’s claim has to be based on the analytic truth 𝐼𝑉𝑇 ⇔ 𝐷𝐶.

(ad b) Diagrams representing lines (𝐹,<) do not depict whether the ϐield (𝐹, +, ⋅, 0, 1, <)

is Euclidean (closed under the square root operation), or (ℝ,+, ⋅, 0, 1, <), or a real-closed

ϐield; graphs of 𝑓 do not distinguish between polynomial and smooth functions. IVT for

polynomials, IVT௣, is valid in real-closed ϐields (these ϐields could be bigger or smaller

than real numbers); in fact, IVT௣ is the axiom for real-closed ϐields (next to the Euclidean

condition).

Bolzano is believed to give the ϐirst proof of IVT. In fact, he sought to prove IVT௣, whilst

IVT was just the lemma. Mislead by a diagram, Bolzano proved the theorem not as general

as it could be: he proved only that IVT௣ is valid in the domain of real numbers.
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Davit Harutyunyan*, Aram Nazaryan, Victor Pambuccian

The Hajja-Martini inequality in a weak absolute
geometry

Searching for results that bear some similarity to Propositions 20 and 21 of Book I of

Euclid’s Elements, M. Hajja and H. Martini arrive in [1, Theorem 12] at the following

theorem, whose validity they prove in the real Euclidean plane.

Theorem. Let 𝑃 be a point in the plane of a triangle 𝐴𝐵𝐶. Then there exists a point𝑄 inside

or on the boundary of 𝐴𝐵𝐶 that satisϔies.

𝐴𝑄 ≤ 𝐴𝑃, 𝐵𝑄 ≤ 𝐵𝑃, 𝐶𝑄 ≤ 𝐶𝑃. (7.1)

Aware of the discrepancy between the statement of the theorem, whose notions belong to

Hilbert’s absolute geometry (whose axioms are the plane axioms of incidence, order, and

congruence of groups I, II, and III of Hilbert’s Grundlagen der Geometrie), which is where

one expects a proof to be carried through, and the methods of proof used, the authors

ask: “Its fanciful proof, using Zorn’s lemma and the Bolzano-Weierstrass theorem, raises

the question whether such a heavy machinery is indeed inevitable.” [1, p. 13] Moreover,

since they can only prove the existence of the point 𝑄, they also ask “whether there is a

procedure (an algorithm) to construct the point 𝑄.” [1, p. 14] Solving this problem, we

prove theorems mentioned below within a very weak plane absolute geometry (all of

whose axioms can be deduced inside Hilbert’s plane absolute geometry).

Theorem. For any point 𝑃 inside or on the boundary of triangle 𝐴𝐵𝐶, there is no point 𝑄,

different from 𝑃, such that 𝑄 and 𝑃 satisfy (7.1).

Theorem. For every point 𝑃 outside of triangle 𝐴𝐵𝐶 there exists a point𝑄 inside of triangle

𝐴𝐵𝐶, such that 𝑄 and 𝑃 satisfy (7.1)ழ.

In the proof of the last theorem we also provide an algorithm to construct such a point 𝑄.
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Tatyana Ivanova*, Tinko Tinchev

First-order theory of lines in Euclidean plane

The paper [1] gives qualitative spatial reasoning in Euclidean plane based solely on lines.

The relations of parallelism and convergence between lines are considered.

In this talk we consider a continuation of [1] by adding a new predicate - perpendicularity.

We introduce a ϐirst-order theory of lines in Euclidean plane with predicates parallelism,

convergence and perpendicularity. The logic is complete with respect to the Euclidean

plane, 𝜔 - categorical and not categorical in every uncountable cardinality. We prove that

the membership problem of the logic is PSPACE-complete.
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Ryszard Mirek

Euclidean Geometry

Renaissance geometry refers directly or indirectly to Euclidean geometry. Fibonacci’s

Practica geometriae written in 1220 contains a large collection of geometry problems ar-

ranged into eight chapterswith theoremsbased onEuclid’sElements. Piero della Francesca

in his treatise solely devoted to the subject of perspective De Prospectiva Pingendi, written

possibly by about 1474, refers to many Euclid’s theorems. For instance in Proposition

1.13, which is known as the ϐirst new European theorem in geometry after Fibonacci,

the proof refers to the similarity of the triangles. In Elements discussion of these issues

is included in the Book VI, Proposition 4 to 8. In turn to determine the height of a man

one can use the rectangle. The method refers to Euclidean Proposition 16, Book 4, which

involves constructing a ϐifteen-sided ϐigure, equilateral and equiangular. What, however,

is the most interesting these and other propositions can be used in the interpretation of

the paintings of Piero della Francesca. Luca Pacioli, the pupil of Piero, in his De divina

proportione moved the mathematical and artistic problems of proportion, especially the

mathematics of the golden ratio and its application in architecture.

The purpose of the study is to describe and compare Renaissance geometry in combination

with Euclidean one.In the Renaissance the mathematical sciences were in the center of

attention and there was a close union between them and the ϐine arts.
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David Pierce

Apollonian proof

This is about a method of proof that seems to have been passed over. Descartes suspected

ancient geometers of using algebra, but covering their tracks. However, in the centuries

since La Géométrie of 1637 [2], persons such as Wallis [7], de Witt [3], and Hamilton [5]

who have reworked a basic result of Apollonius [1, I.49–50] have abandoned his visual

proof.

Apollonius gives three ways to characterize a conic section: (i) an equation, involving

a latus rectum, that we can express in Cartesian form; (ii) the proportion whereby the

square on the ordinate varies as the abscissa or abscissas; (iii) an equation of a triangle

with a parallelogram or trapezoid. Holding in an afϐine plane, the latter equation is not

usefully translated into the lengths that Descartes has taught us to work with. With the

equation, there is a proof-without-words of what today we consider a coordinate change.

According to Rosenfeld [6], “Apollonius never mentions parabolic, elliptic, and hyperbolic

turns, but no doubt that he used these transformations.” The better modern term for what

Apollonius uses would be “scissors congruence” or “motivic measure” [4].
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Grzegorz Sitek

Mereological model of arithmetic of natural and
real numbers

In [1] the Authors have obtained the full development of Tarski’s geometry of solids,

that was sketched in [3].Tarski’s Geometry of Solids is one of the systems of the so called

”pointless geometry” and it is based on mereology. In such systems, a notion of a ”point”

is not assumed as one of the primitive ones. Instead of it, the notion of three-dimensional

space and three-dimensional parts of it are accepted. Points are deϐined then as a special

kind of sets of parts of space.

In [2] we have introduced in Tarski’s theory the notion of diameter of mereological ball. We

have shown there, among others, that the set of all diameters together with the relation of

inequality of diameters is a dense, linearly ordered set, without the least and the greatest

element.

Now, we are going to expand these results. We will present a brieϐly sketch of Tarski’s

theory and then a sketch of the construction of the notion of natural numbers and real

numbers in the theory, together with an interpretation of the operations of addition and

multiplication.
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Philippe Balbiani, Tinko Tinchev*

Computability of contact logics with measure

Contact logics [1] are propositional logics interpreted over Boolean contact algebras [3].

They stem from the point-free approaches of geometry put forward by Whitehead. Their

language ℒ(≤, 𝐶) includes Boolean terms representing regions. Let X be a set of variables.

The set of Boolean terms (𝑠, 𝑡, etc) over X being denoted T(X), the set A(X) of atomic

formulas over X consists of all expressions of the form 𝑠 ≤ 𝑡 (“𝑠 is part-of 𝑡”) and 𝐶(𝑠, 𝑡)

(“𝑠 is in contact with 𝑡”). The set of all formulas (𝜑, 𝜓, etc) over X is the least set F(X)

containingA(X) and such that for all𝜑,𝜓 ∈ F(X): ⊥ ∈ F(X),¬𝜑 ∈ F(X) and (𝜑∨𝜓) ∈ F(X).

Of interest are, of course, the sets of all valid formulas determined by the various classes

of Boolean contact algebras one may consider. See [1, 5] for detailed investigations.

The combination of topological and size information is a fundamental issue formultifarious

applications of spatial reasoning [4]. It can be realized by considering Boolean contact

algebras with measure, i.e. algebraic structures (𝐴, 𝐶, 𝜇)where (𝐴, 𝐶) is a Boolean contact

algebra and 𝜇 is a positive ϐinite measure on 𝐴. Contact logics with measure are extensions

of contact logics. Their language ℒ(≤, 𝐶, ≤௠) contains all additional atomic formulas of

the form 𝑠 ≤௠ 𝑡 (“the size of 𝑠 is less or equal than the size of 𝑡”). Of interest are, again, the

sets of all valid formulas determined by the various classes of Boolean contact algebras

with measure one may consider.

Using complexity results about linear programming [2], we show that the set of all valid

formulas determined by the class of all Boolean contact algebras with measure is in coNP.

Our proof relies on the equivalence between the satisϐiability of a given formula 𝜑 and the

consistency of an associated system 𝒮ఝ of linear inequalities. It uses the following facts:

the computation of 𝒮ఝ from𝜑 is possible in non-deterministic polynomial time; if a system

of 𝑘 linear inequalities with integer coefϐicients of length at most 𝑛 has a non-negative

solution then it has a non-negative solution with at most 𝑘 positive entries of length in

𝒪(𝑘.(𝑛 + log 𝑘)).
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Ryota Akiyoshi*, Andrew Arana

On Gaisi Takeuti’s philosophy of mathematics

Gaisi Takeuti (1926-2017) is one of the most distinguished logician in proof theory after

Hilbert and Gentzen. He furthered the realization of Hilbert’s program by formulating

Gentzen’s sequent calculus for higher-oder logics, conjecturing the cut-elimination the-

orem holds for it (Takeuti’s conjecture), and obtaining several stunning results in the

1950–60’s towards the solution of his conjecture. Though he has been chieϐly known as a

great mathematician, he wrote many papers in English and Japanese [2, 3, 4] where he

expressed his philosophical thoughts.

In this talk, we aim to describe a general outline of our project to investigate Takeuti’s

philosophy of mathematics. In particular, we point out that there is a crucial difference

between Takeuti’s program andHilbert’s program, which is based on the fact that Takeuti’s

philosophical thinking goes back to Nishida’s philosophy in Japan.
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James Appleby

ResolvingTwoParadoxesAboutKnowledgeStates in the
Foundations of Intuitionistic Analysis

A choice sequence is a continually growing sequence whose growth may, or may not, be

restricted in some way. They were utilised by Brouwer to resolve a crucial issue with his

intuitionistic re-foundation of mathematics; speciϐically, they allowed him to bridge gap

between the rationals and the reals.

Choice sequences received no true formalisation in Brouwer’s works, however, from [2]

onwards, he considered them as a pair of growing objects; a list of elements generated so

far, and a list of intensional ϐirst order restrictions.

A knowledge state is a formalised way of representing ϐinite information about choice

sequences. This allows us to formally represent intensional information about choice

sequences, and achieve a notion of choice sequence close to that proposed by Brouwer.

The theory 𝐹𝐼𝑀-𝐾𝑆 put forward in [1] demonstrates that knowledge states can be used

to successfully found intuitionistic analysis. They have also been used in [3] to show that

the theory of the creating subject is not needed.

This talk demonstrates that the theory of knowledge states put forward in [1] allows two

paradoxes to be derived, and it then outlines their resolution.
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Pavel Arazim

Logical systems as pedagogical and perhaps existential
games

The relation between our everyday reasoning and logical systems has become a topic of

discussions rich both as far as the quantity of their outputs, as well as the diversirty of

opinions is concerned. The straightforward opinion that logic simply captures the rules

for correct reasoning as we abide by them gets more and more under attack. Many ways

to slacken the relationship, yet still not to lose it completely were undertaken. Still, logical

systems are supposed to remain in some sense normative for how we reason. Various

versions of logical pluralismhave been proposed, recently the idea of reϐlective equilibrium

has been used to give a rationale to logical systems. I propose to see thematters altogether

differently.I think logical systems have primarily a pedagogical import, they work as a

simulation of correct reasoning. In this way they are very simpliϐied. Just as it is a big

difference whether you travel in a spaceship or only train on a simulator. Besides this,

logic enables us to have an overview over the basic structures of our reasoning. Normally,

we understand that a speciϐic conclusion follows from speciϐic premises, we are immersed

in the individual cases. With formal logic, we focus on such general notions as following

from. Logic is thus a game which enables us to get a sight of something serious, just in

the sense in which Eugen Fink speaks of playing in general as about a form of getting a

glance at holistic imports and meanings of the phenomena we encounter in our life. Just a

as tragedy in theatre can make us realize something about ourselves, particularly about

our emotions, logical systems enable us to learn something about our rationality. In both

cases the reality is different and much more complex and perhaps boring.
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Sena Bozdag

A hyperintensional and paraconsistent approach to
belief dynamics

I present a new framework that reduces idealizations of reasoning by focusing on informa-

tion states as the basis of beliefs. I use an extended version of the HYPE model [1] with a

preference ordering and a binary belief relation. The model explicitly represents possibly

inconsistent and incomplete, non-decreasing collections of information. The static belief

operator is a hyperintensional, non-monotonic and paraconsistent modality. The resulting

belief sets are consistent but not necessarily closed under logical consequence. On the

dynamic aspect, I present two dynamic operators, for belief revision and belief contrac-

tion, and their duals. During the process of belief formation and belief change, the agents

evaluate the collections of information, rather than the pieces of information or the sets

of beliefs. In this way, although there is no apparent distinction between basic or direct

information andmere inferences that depend on them, it turns out they behave differently

over the course of belief change. As a result, the models are more ϐlexible than HYPE

models, and the corresponding propositional logic is weaker than the HYPE logic and the

dynamic modal logic is weaker than mainstream logical approaches of belief dynamics.
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Ludovica Conti

One or more Logicisms

The aim of this talk consists in comparing different ways to pursue a logicist project.

More in particular, I would compare a proof-theoretic version of logicism, like Tennant’s

costructivist logicism (CL [1]), with two axiomatic versions, namely Heck’s ϔinite Frege

Arithmetic (FFA [2]) and a free zig-zag logicism (FZL), obtained by the adoption of a

negative free logic and a restricted version of Basic Law V1.

Both these three systems allows us to derive any instance of the comprehension axiom

schema but the different restrictions of the logic (in CL and in FZL) and of the abstraction

principles (HP in FFA and BLV in FZL) determine the different strength of the theories.

My two aims consist in, ϐirst, discussing the conjecture (proposed by Tennant in [1]) that

CL is the intuitionistic (relevant) fragment of Heck’s FFA and, secondly, clarifying the

existential role of abstraction principles in systems which adopt free logic. Comparing the

derivational power of CL and FZL, we can observe that the ϐirst one allows us to derive

the existential claim ∃𝑥(𝑥 = 𝐹) only where F is a concept with a ϐinite extension, while

the second one allows us to derive also the existential instance of such theorem where F

means natural number - namely a concept with an inϐinite extension.
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Vedran Čačić, Marko Doko, Marko Horvat*

Rearranging absolutely convergent well-ordered series
in Banach spaces

Previously at Logic Colloquium, we showed (jointly with Domagoj Vrgoč) that for every

absolutely convergent series of real numbers, if its terms are rearranged with respect to

any countable ordinal, the newly formed well-ordered series is also absolutely convergent

and has the same sum. This timewe present an elegant proof of a more general reordering

principle in the setting of Banach spaces.
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Oguz Korkmaz

Belief as a quantum bit

Belief has been formalized in various frameworks in the course of formal epistemology.

Structural differences among these frameworks produce different properties for the

concept of belief, one of which is pertinent to the deϐinition of truth values. For example,

truth of a belief in classical epistemic modal logic is represented by a classical bit: 0 or 1.

Probabilistic approach, on the other hand, assigns propositions to the interval [0,1].

A quantum bit has probabilistic features, so it can be utilized as a representational tool

for probabilistic belief. One of the axes on the Bloch sphere can be deϐined as the axis of

probability and another as the axis of information growth. Furthermore, belief updates can

theoretically be represented by Bloch sphere rotations which are provided by quantum

logic gates.
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Harold Hodes

Ramiϐied-types for states of affairs

Assume that for any monadic predication P(u), which predicates the property being P

of an object u, there is a unique state-of-affairs (which consists in u being P) which that

predication represents; let |P(u)| be thatstate-of-affairs. I will give an argument that for

every object u there are distinct properties being P and being Q such that *P(u)* = *Q(u)*.

Conisder the following impredicative second-order comprehension principle: (G) some X

every y (X(y) iff some Z (y=*Z(u)* and not Z(y))).

So far, no problem. But one might think that states-of-affairs have constituents, and that

the following principle of constituency is true for any u and any property being P: (C) The

constituents of*P(u)* are exactly u and being P.

By (C), the only constituents of *P(u)* are u and being P, and the only constituents of *Q(u)*

are u and being Q, which entails that being P = being Q.

We could reject (C), at least in its full generality. Or we could say that (G) is defective. The

former leads to a novel version of logical-atomist metaphysics. The latter points to a (to

my knowledge) novel form of ramiϐication.
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Alexandre Madeira*, Manisha Jain, Manuel Martins

Towards Invariant bisimulations for parametric multi-
valued dynamic logics

Dynamic Logic is a crucial mark on the applied logic to engineering. Despite of its seminal

pragmatic role, as the modal logic for the veriϐication of classic programs, its manifest

versatility on being adjusted to other computational scenarios (from hybrid systems to

quantum computing), stil justifyies further efforts on its application scope expansion.

In order to handle with scenarios where uncertainty is a prime concern, we presented in

[1] a method for the systematic construction of many–valued dynamic logics. The method

is parametrised by an action lattice, that deϐines both the computational paradigm and

the truth space (corresponding to the underlying Kleene algebra and residuated lattices,

respectively). This parametric principle pushed then other theoretical developments,

including the a method to the generation of multi-valued epistemic logic, as reported in

[2].

This talk contriibutes on a parametric models theory for these logics. It is particular

focused in the study of generic (parametric) notions of bisimulation adequate to these

formalisms. In analogy of the what we have for standard dynamic logic, we explore, for

this generic setting, the usual results like the modal invariance and the Hennessy-Milner

correspondences.

Work is supported by ERDF European Regional Development Fund, through the COMPETE

Programme, and by National Funds through FCT within projects POCI-01-0145-FEDER-

016692 and UID/MAT/04106/2019.
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Francisco Martinez Herrera

Justiϐications and the Lewis argument on ECQ:
a relevant note

Taking into account the usual Lewis’ independent argument on ECQ, we use Justiϐication

Logic as proposed in Artemov [1] [2] to give a simple formalization of the argument. Then,

we proceed to clarify the meaning of the classical argument and ϐinally argue that the

hypothetical proof-structure shown by means of justiϐication terms provides a clearer,

simpler and more explanatory representation of the grounds of some typical arguments

to reject ECQ coming from relevant logicians [3, 5, 8].
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Meha Mishra*, A.V. Ravishankar Sarma

An inconsistency tolerant paraconsistent deontic logic
of moral conϐlicts

Moral conϐlicts are special kind of situations that arise as a reaction to dealing with the

conϐlicting obligations. The resolution of moral conϐlicts has been studied extensively

within the area of moral reasoning whereas representation within the framework of

Deontic logic. Despite of moral conϐlicts are very much part of our linguistic discourse and

our tolerance towards them is frequent phenomena, yet the core principles of Standard

Deontic Logic fail to capture the intuitive notion of moral conϐlicts in a satisfactory manner.

This poses amajor challenge in handlingmoral conϐlicts. We argue that situations involving

moral conϐlicts mainly concerned with tolerating inconsistencies, and we assume that

best known framework for dealing with moral conϐlicts are the deontic logics extended

with the paraconsistent logic. In paraconsistent logics, a conϐlict can be represented,

operated, isolated, without invalidating the inference rules. I examine three prominent

paraconsistent logics; GrahmPriest’s logic 𝐿𝑃 , the logic𝑅𝑀 of the school of relevance logic

and the Da Costa’s logics 𝐶𝑛 based on the three valued logic. We emphasize on Deontic

paraconsistent logics based on Priest’s paraconsisntent logic. I illustrate my work with

a classic example from famous Indian epic ‘Mahabharata’ where the protagonist Arjuna

faces moral conϐlict in the battleϐield of Kurukshetra. The inquiry is to ϐind an adequate

set of principles to accommodate Arjuna’s moral conϐlict in paraconsistent deontic logics.

Meanwhile it is also interesting to relate Krishna’s arguments for resolvingArjuna’s conϐlict

to paraconsistent approach of conϐlict tolerance.
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Iaroslav Petik

Reading Feyerabend: from epistemic anarchism to an-
archism in foundations of formal systems

Paul Feyerabend was a famous philosopher of science who developed a theory of scientiϐic

anarchism. It claims that rationality and scientiϐic method are only the products of one sep-

arate tradition of thought which competes with numerous other traditions [Feyerabend].

In this schema science is an eclectic set of different competing systems which functions

as an evolving system. But there is no general criterion like rationality for the process

of selection. On the other hand the question of foundations of formal systems asks the

question what is the ontological foundation for any kind of formal system – mathematics,

logic system, the language of programming etc. The program of logicism was aimed at

proving that all the chapters ofmathematics can be reduced to purely logical constructions.

Different philosophical theories in mathematics claim that all the mathematics can be

reduced to theory of sets, theory of categories, some constructive principles etc. None

of these attempts were eventually successful. The idea of the thesis is to extrapolate and

anarchic ideas of Feyerabend on the question about foundations of formal systems. Maybe

attempts to ϐind the “main” formal system were all unsuccessful because there is no such

system. There is of course the question of practice in the Feyerabend’s conception and

its counterpart for the case of formal systems. Probably the role of practice should be

admitted in this case as well but in a more speciϐied form. In conclusion it should be said

that if the anarchism is eligible for the domain of formal systems than the question about

foundations of these systems should be also shifted to the study of cooperation of different

systems as equal competing structures.
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Tomasz Polacik

Archetypal Rules: Beyond Classical Logic

The notion of archetypal rule was introduced by Lloyd Humberstone, cf. [1]. Informally,

we say that a rule 𝑟 is archetypal for a logic 𝐿 if, up to provability in 𝐿, 𝑟 is derivable, not

invertible and for any other derivable rule 𝑠 there is a substitution such that the premisses

of 𝑠 are the instances of premisses of 𝑟 and the conclusion of 𝑠 is the instance of the

conclusion of 𝑟. The problem of semantic characterization of archetypal rules in classical

propositional logic was solved recently in [4]. Unfortunately, the approach which was

applied to classical logic cannot be applied to other logics in a direct way. In this talk we

survey some results and shed some light to the general problem of archetypal rules in

case of intermediate logics.
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Thomas Macaulay Ferguson, Elisangela Ramirez-Camara*

The Limit of the Strict-Tolerant Hierarchy is Essentially
Classical and Even If It’s Just LP, That’s Probably Okay.

In this paper, we argue that the analyses that tackle the question of whether ST—the

non-transitive logic of [2]—is classical logic, offer a framework which is overly restrictive

of the notion of metainference. We offer a more elegant and tractable semantics for the

strict-tolerant hierarchy based on the three-valued function for the conditional and show

how this semantics easily handles the introduction of mixed inferences, i.e., inferences

involving objects belonging to more than one (meta)inferential level.

We then consider the case of the deep ST theorist; someone committed to the idea that

every level of reasoning follows the bounds-consequence reading offered in [1]. Just

as the intuitionist demands constructive metareasoning as well as constructive object

language reasoning, the deep ST theorist expects their account of inference to apply to
metareasoning. Formally, we extend the translation function thatmapsST-valid inferences
to LP tautologies so we can account for mixed inferences. While this might seem to

reinforce the idea that the deep ST theorist simply endorses LP, we argue instead that

it attributes to the deep ST theorist a constancy denied to her by the current analyses

of STmetareasoning. Additionally, this account provides a model for Carroll’s dialogue

between Achilles and the tortoise, with the classical theorist being unable to ϐind a point

of difference between themselves and the deep ST theorist, no matter how high in the

metatheoretical hierarchy they ascend.
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Luis Estrada-González, Ricardo Nicolás-Francisco*

Negation can be just what it has to

According to Jc Beall [1], there is no logical negation because a logical negation must

be either exclusive or exhaustive, but there are no logical reasons that force negation in

either way in the correct logic –that, for reasons that we cannot reproduce here, has to

be subclassical for Beall (see [2])–. In this paper, we provide some counterarguments to

Beall. In particular, we probe characterizations of negation that do not involve the need

for exhaustion or exclusion, for example, the ϐlip-ϐlop character of negation as present in

Beall’s preferred subclassical logic: FDE.
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Luis Estrada-González, Claudia, Lucía Tanús-Pimentel*

Content-sharing in relevant mathematics

The Variable Sharing Principle (VSP) is the necessary condition par excellence in relevance

logics to express that antecedent and consequent share content in a valid conditional.

Nonetheless, theVSP is but amember of a family of suchprinciples,most of thempractically

unknown, with distinct degrees of demand and many of themmore suitable when dealing

with languages with higher expressiveness.

In this paper, we present some such principles and use them to evaluate different results

in relevant mathematics, from Meyer’s result that any true identity in relevant arithmetic

implies any self-identity, to more recent results in inconsistent set theory by Weber and

his collaborators.
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Vedran Čačić*, Egor V. Kostylev, Juan L. Reutter, Domagoj Vrgoć

Complexity of some fragments of description logics

An important application of modal logic in computer science is the theoretical foundation

of description logic, which was born out of need to represent knowledge. The important

questions of the complexity of a logic, such as the complexity of deciding whether a

formula is valid or satisϐiable, or the validity of a logical inference, are typically formulated

in terms of description logics as the complexity of answering queries. Ontologies, i.e.

formalized databases in description logic, are naturally represented by graphs; concepts,

i.e. formalized classes of objects correspond to vertices in this context, and roles, i.e.

formalized relationships between objects, correspond to edges. Queries can be expressed

over concepts or over roles, and as such they correspond to two classes of formulas in the

corresponding descriptive logic. In graphs they correspond to searching for vertices or

paths with certain properties.

One example, whichwe intend to present, is the logic CPDL(¬), in which it is possible (apart

from the usual operators from propositional dynamic logic, like negation, conjunction and

disjunction of concepts, and tests, unions, compositions and iterations of programs) to

consider the converses of programs (interpreted as inverses of binary relations) and the

negations of atomic programs. We know [2] that PDL(¬) (i.e. PDL with negations of atomic

programs, but with no converses) is EXPTIME-complete, and we believe that an analogous

result can be proved for CPDL(¬).
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Boričić, Marija 141

Botazzi, Emanuele 72

Boudou, Joseph 110

Boutry, Pierre 201

Bozdag, Sena 219

Bradley-Williams, David 73
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Tanús-Pimentel, Lucı́a 231

Tarafder, Sourav 60

Tedder, Andrew 171

Thapen, Neil 137

Tinchev, Tinko 213,209

Tomczyk, Agata 144

Tussupov, Jamalbek 191

Vasey, Sebastien 87,98

Vatev, Stefan 192,187,189

Visser, Albert 107
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