JOACHIM MUELLER-THEYS, Multi-valued interpretations. Kurpfalzstr. 53, 69 226 Nußloch bei Heidelberg, Germany.

E-mail: mueller-theys@gmx.de.

It seems at least unlikely that there is an natural way to extend the $\{0, 1\}$ -interpretations of PL to arbitrary values from the unit interval $[0,1] := \{x \in \text{IR} : 0 \le x \le 1\}.$

0. For technical reasons, we use the following PL-language: $p_1, p_2, p_3, \ldots, \neg \phi, \bigwedge \Phi$, $\bigvee \Psi$, where Φ, Ψ stand for *finite* sets of formulæ previously built. For instance, $\phi \land \psi :=$ $\bigwedge \{\phi, \psi\}$. $apv(\phi)$ be the set of atomic propositional variables p occurring in ϕ .

Formulæ are binarily interpreted in well-known way, e. g. $V(p) \in \{0, 1\}, V'(\neg \phi) = 1$ iff $V'(\phi) = 0$, $V'(\bigwedge \Phi) = 1$ iff $V'(\phi) = 1$ for all $\phi \in \Phi$. $V'(\bigvee \emptyset) = 0$. $\models \phi$ iff $V'(\phi) = 1$ for all V, whence $\models \phi \leftrightarrow \psi$ iff $V'(\phi) = V'(\psi)$.

I. Let $apv(\phi) = \{p^1, \dots, p^n\}$. Call $\kappa := \bigwedge \Lambda$ fundamental iff either $p^k \in \Lambda$ or $\neg p^k \in \Lambda$ for every $1 \leq k \leq n$. $\kappa_1 \perp \kappa_2$ if $\Lambda_1 \neq \Lambda_2$. There is an unique set K of fundamental κ such that $\models \phi \leftrightarrow \bigvee K$, where $\delta := \bigvee K$ corresponds to (full) DNF.

Now let $W(p^k) \in [0,1]$ be any multi-valued assignment. The MVI or Buchholz valuation W' is constructed as follows:

$$W'(p^k) := W(p^k),$$

 $W'(\neg p^k) := 1 - W'(p^k),$

$$W'(\phi) := W'(\delta);$$

revealing the somehow evident principles used.

Let $W_{.5} := \frac{1}{2}$. $W'_{.5} = \pi_{\rm PL}$ has been paradigm for MVI, whereby *PL*-probability $\pi_{\rm PL}(\phi)$ equals the number of rows with value 1 in the (binary) truth table of ϕ divided by 2^n —originating with the *Tractatus*, probably.

II. Except for $\pi(\Lambda \Lambda) = \prod_{\lambda \in \Lambda} \pi(\lambda)$, the principles used to define W' are all properties of probability functions π in the sense of probability logic—maybe of many-valued logic at all—, and we showed that the literal-independent π can be identified with our W'.

However, the nearness to stochastics is deceptive: Consider, e. g., coin toss, where $\pi(\text{head} \wedge \text{tail}) \neq \pi(\text{head}) \cdot \pi(\text{tail}).$

III. What have we found?

Acknowledgment. After a joint quest, WILFRIED BUCHHOLZ had solved the problem technically.—Preliminary versions were presented at ASL-APA and UniLog 2018. Thanks to many participants, Walter Carnielli, Luis Estrada-González, Peter Maier-Borst, Schafag Kerimova, Andreas Haltenhoff.