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Among the fundamental questions in computer science, at least two have a deep
impact on mathematics. What can computation compute? How many steps does a
computation require to solve an instance of the 3-SAT problem? Our work addresses
the first question, by introducing a new model called the ex-machine [3]. The ex-
machine executes Turing machine instructions and two special types of instructions.
Quantum random instructions are physically realizable with a quantum random number
generator [4, 6]. Meta instructions can add new states and add new instructions to the
ex-machine.

A countable set of ex-machines is constructed, each with a finite number of states and
instructions; each ex-machine can compute a Turing incomputable language, whenever
the quantum randomness measurements behave like unbiased Bernoulli trials. In 1936,
Alan Turing posed the halting problem for Turing machines and proved that this prob-
lem is unsolvable for Turing machines. Consider an enumeration Ea(i) = (Mi, Ti) of all
Turing machines Mi and initial tapes Ti, each containing a finite number of non-blank
symbols. Does there exist an ex-machine X that has at least one evolutionary path X
→ X1 → X2 → . . . → Xm, so at the mth stage ex-machine Xm can correctly determine
for 0 ≤ i ≤ m whether Mi’s execution on tape Ti eventually halts? We construct an
ex-machine Q(x) that has one such evolutionary halting path.

The existence of this path suggests that David Hilbert [5] may not have been mis-
guided to propose that mathematicians search for finite methods to help construct
mathematical proofs. Our refinement is that we cannot use a fixed computer pro-
gram that behaves according to a fixed set of mechanical rules. We must pursue
computational methods that exploit randomness and self-modification [1, 2] so that
the complexity of the program can increase as it computes.
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