Scott [1] showed that every countable structure can be described up to isomorphism among countable structures by a sentence of $L_{\omega_1\omega}$ known as its Scott Sentence. There is a kind of normal form for infinitary sentences, so that each can be classified as Π_α or Σ_α for some countable α; a conjunction of a Σ_α and a Π_α sentence is called d-Σ_α. Every finitely generated structure has a Σ_3 Scott sentence. Matthew Harrison-Trainor and Meng-che Ho [3] showed that a finitely generated structure has a d-Σ_2 Scott sentence iff it is self-reflective, i.e., contains a proper Σ_1-elementary substructure isomorphic to itself. The speaker, McCoy, and Knight [2] showed that this condition also holds iff some generating tuple has a Π_1-definable automorphism orbit. In this talk, we generalize the notion of a finitely generated structure, and show that a finitely α-generated structure has a d-$\Sigma_{\alpha+1}$ Scott sentence iff it is α-reflective, or equivalently if some α-generator has a Π_α-definable automorphism orbit.

