Assume that for any monadic predication \(P(u) \), which predicates the property being \(P \) of an object \(u \), there is a unique state-of-affairs (which consists in \(u \) being \(P \)) which that predication represents; let \(-P(u)- \) be that state-of-affairs. I will give an argument that for every object \(u \) there are distinct properties being \(P \) and being \(Q \) such that \(*P(u)* = *Q(u)* \). Consider the following impredicative second-order comprehension principle: (G) some \(X \) every \(y \) \((X(y) \iff \text{some } Z \ (y = *Z(u)* \text{ and not } Z(y))) \).

So far, no problem. But one might think that states-of-affairs have constituents, and that the following principle of constituency is true for any \(u \) and any property being \(P \): (C) The constituents of \(*P(u)* \) are exactly \(u \) and being \(P \).

By (C), the only constituents of \(*P(u)* \) are \(u \) and being \(P \), and the only constituents of \(*Q(u)* \) are \(u \) and being \(Q \), which entails that being \(P = \text{being } Q \).

We could reject (C), at least in its full generality. Or we could say that (G) is defective. The former leads to a novel version of logical-atomist metaphysics. The latter points to a (to my knowledge) novel form of ramification.