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Gödel’s incompleteness theorems

Theorem 1 (Gödel)

Let T be a recursive enumerable (r.e.) extension of PA.

First incompleteness theorem (G1) If T is ω-consistent,

then T is not complete (there is a sentence θ

such that T 0 θ and T 0 ¬θ).

Second incompleteness theorem (G2) If T is consistent,

then the consistency of T is not provable in T .

I We say a consistent r.e. theory T is essentially

incomplete if any consistent r.e. extension of T is

incomplete.

I PA is essentially incomplete.
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Outline of the content

I Classifications of different proofs of Gödel’s

incompleteness theorems

I The limit of applicability of G1

I The limit of applicability of G2
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Different proofs of incompleteness

We could classify proofs of Gödel’s incompleteness

theorems from the following aspects:

I Proof via proof theoretic method;

I Proof via recursion theoretic method;

I Proof via model theoretic method;

I Proof via arithmetization;

I Proof via the fixed point lemma;

I Proof via logical paradox;

I Proof via constructive method;

I Proof only assuming that the base theory is consistent;

I Independent sentences with real mathematical content.
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Incompleteness without arithmetization

Grzegorczyk proposed the theory of concatenation (TC)

with no reference to natural numbers and proved that TC is

essentially incomplete without arithmetization.

Definition 1 (A. Grzegorczyk)

The theory of concatenation TC has the language

{_,α, β} and the following axioms:

TC1 ∀x∀y∀z(x _ (y _ z) = (x _ y) _ z);

TC2 ∀x∀y∀u∀v(x _ y = u _ v → ((x = u ∧ y =

v) ∨ ∃w((u = x _ w ∧ w _ v = y) ∨ (x =

u _ w ∧ w _ y = v))));

TC3 ∀x∀y(α 6= x _ y);

TC4 ∀x∀y(β 6= x _ y);

TC5 α 6= β.
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Incompleteness and logical paradox

Different proofs of incompleteness theorems via paradox:

Gödel Liar Paradox

Boolos, Chaitin, Kikuchi, Vopenka, Kurahashi, Sakai, Tanaka

Berry’s paradox

Kikuchi, Kurahashi, Priest, Cieśliński and Urbaniak Yablo’s

Paradox

Kritchman-Raz Unexpected Examination Paradox

Cieśliński Grelling-Nelson’s Paradox
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Concrete incompleteness for PA
Gödel’s proof uses meta-mathematical method and

Gödel’s sentence has no real mathematical content.

A natural question is then: can we find true sentences

not provable in PA with real mathematical content?

Paris-Harrington Paris-Harrington principle

Kirby and Paris The Goodstein sequence, The

Hercules-Hydra game

Kanamori-McAloon The Kanamori-McAloon principle

Beklemishev The Worm principle

Kirby The flipping principle

Mills The arboreal statement

Pudlák P.Pudlák’s Principle

Clote The kiralic and regal principles

Weiermann Variants of Paris-Harrington principle and

Goodstein sequence
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Concrete incompleteness for Higher-Order

Arithmetic

Question 1

Can we find a mathematical theorem expressible in

Second-Order Arithmetic but not provable in Second-Order

Arithmetic?

Theorem 2

There is a concrete mathematical theorem which is

expressible in Second-Order Arithmetic, not provable in

Second-Order Arithmetic, not provable in Third-Order

Arithmetic, but provable in Fourth-Order Arithmetic.

Reference:

Yong Cheng. Incompleteness for Higher-Order

Arithmetic: An example based on Harrington’s Principle.

Springer series: Springerbrief in Mathematics, 2019.
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The notion of interpretation

I An interpretation of a theory T in a theory S is a

mapping from formulas of T to formulas of S that

maps all axioms of T to sentences provable in S .

I S � T denotes that S is interpretable in T .

I S � T denotes that S is interpretable in T but T is not

interpretable in S (i.e. S is weaker than T w.r.t.

interpretation).
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Finding the limit of applicability of G1

Question 2 (The big open question)

Exactly how much information of arithmetic is needed

for the proof of G1?

Definition 2

G1 holds for r.e. theory T iff for any consistent r.e.

theory S, if T is interpretable in S, then S is incomplete.

Proposition 1

G1 holds for T iff T is essentially incomplete.
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The system R

Definition 3 (Tarski, Mostowski and Robinson)

Let R be the system consisting of schemes Ax1-Ax5

with L(R) = {0, n,+, ·,≤} where m, n ∈ N.

Ax1 m + n = m + n;

Ax2 m 6= n if m 6= n;

Ax3 m · n = m · n;

Ax4 ∀x(x ≤ n→ x = 0 ∨ · · · ∨ x = n);

Ax5 ∀x(x ≤ n ∨ n ≤ x);
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Summary

I Σn is Robinson arithmetic Q plus induction for Σn

formulas.

In a summary, we have the following picture:

(1) Q� I Σ1 � I Σ2 � · · ·� I Σn � · · ·�PA, and G1 holds for

them;

(2) Theories PA−,Q+,Q−,TC,AS,S1
2 and Q are all

mutually interpretable and hence G1 holds for them;

(3) R�Q� PA and G1 holds for them.

Theorem 3 (Visser)

Suppose R ⊆ A, where A is finitely axiomatized and

consistent. Then there is a finitely axiomatized B such that

R ⊆ B ⊆ A and B � A.
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G1 holds for many theories weaker than R

Question 3

Could we find a theory S such that G1 holds for S and

S � R?

Definition 4

〈S ,T 〉 is a recursively inseparable pair if S and T are

disjoint r.e. sets, and there is no recursive set X ⊆ N such

that S ⊆ X and X ∩ T = ∅.

Theorem 4

For any recursively inseparable pair 〈A,B〉, there is a

theory U〈A,B〉 such that G1 holds for U〈A,B〉 and U〈A,B〉 � R.
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Definition 5

Let 〈A,B〉 be a recursively inseparable pair. The theory

U〈A,B〉 consists of the following axioms in the language

{0, n,P}:

(1) m 6= n if m 6= n;

(2) P(n) if n ∈ A;

(3) ¬P(n) if n ∈ B.



The limit of

incompleteness for

Weak Arithmetics

Yong Cheng

The difficult part is to show that U〈A,B〉 does not

interpret R.

I show this using some tools from JeŘábek’s work via

model theory.

Reference:

Emil JeŘábek, Recursive functions and existentially

closed structures, to appear in Journal of Mathematical

Logic.

Yong Cheng, Finding the limit of incompleteness I,

Submitted.
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A question

Theorem 5 (Visser)

Suppose T is an r.e. theory. Then T is interpretable in

R iff T is locally finitely satisfiable.

Question 4 (Visser)

Would S with S � R such that G1 holds for S shares

the universality property of R that every locally finitely

satisfiable theory is interpretable in it.

The answer for this question is negative.

For any recursively inseparable pair 〈A,B〉, the theory

U〈A,B〉 is a counterexample for Visser’s Question.
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Questions

Define D = {S : S � R and G1 holds for S}.

Question 5

(1) Could we find a minimal theory S w.r.t. interpretation

such that G1 holds for S?

(2) Is (D,�) well founded?

(3) Are any two elements of (D,�) comparable?

Conjecture 1

(D,�) is not well founded and has incomparable

elements.
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Turing degree verse Interpretability degree

Define D = {S : S <T R and G1 holds for S}.

Question 6

(1) Could we find a minimal theory S w.r.t. Turing

Reducibility such that G1 holds for S?

(2) Is (D, <T) well founded?

(3) Are any two elements of (D, <T) comparable?
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For any Turing degree 0 < d < 0′, there is a theory U

such that G1 holds for U, U <T R and U has Turing degree

d.

Corollary 1

(1) There is no a minimal theory S w.r.t. Turing Reducibility

such that G1 holds for S?

(2) (D, <T) is not well founded.

(3) (D, <T) has incomparable elements.
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The intensionality of G2

I We say that G2 holds for T if the consistency

statement of T is not provable in T .

I This definition is vague: what do we mean “the

consistency statement of T is not provable in T ”?

I G2 is essentially different from G1 due to the

intensionality of G2: whether G2 holds for T depends

on how we formulate the consistency statement.
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Factors affecting G2

“Whether G2 holds for T ” depends on the following

factors:

(1) the definition of provability predicate;

(2) the choice of an arithmetic formula to express

consistency;

(3) the choice of the base proof system;

(4) the choice of numberings;

(5) the choice of a specific formula numerating

(representing) the axiom set.



The limit of

incompleteness for

Weak Arithmetics

Yong Cheng

G2 and the definition of provability predicate

I The consistency statement Con(T ) is usually defined as

¬PrT (p0 6= 0q).

I Being a consistency statement is not an absolute

concept but a role w.r.t. a choice of the provability

predicate.

I G2 holds for any provability predicate which satisfies the

Hilbert-Bernays-Löb Derivability Condition D1-D3.

I Define the Rosser provability predicate PrRT (x) as the

formula ∃y(PrfT (x , y) ∧ ∀z ≤ y¬PrfT (¬̇(x), z)).

I G2 fails for Rosser provability predicate:

T ` ConR(T ) , ¬PrRT (p0 6= 0q).
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G2 and the choice of arithmetic formulas to

express consistency

(1) Con(T ) , ¬PrT (p0 6= 0q).

(2) Con0(T ) , ∀x(Fml(x) ∧ PrT (x)→ ¬PrT (¬̇x));

Kurahashi constructed a Rosser provability predicate

such that G2 holds for the consistency statement formulated

via Con0(T ), but G2 fails for the consistency statement

formulated via Con(T ).
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G2 and the choice of numberings

Any injective function γ from a set of

L(PA)-expressions to N qualifies as a numbering.

Gödel’s numbering is a special kind of numberings

under which the Gödel number of the set of axioms of PA is

recursive.

“Whether G2 holds for T ” depends on the choice of

numberings.

Grabmayr shows that G2 holds for acceptable

numberings; But G2 fails for some non-acceptable

numberings.
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G2 depends on the numeration of T

I α(x) is a numeration of PA if for any n,PA ` α(n) iff n

is the Gödel number of some sentence in T .

I G2 holds for Σ1 numerations of PA, but fails for some

Π1 numerations of PA.

I Feferman constructs a Π1 numeration τ(u) of PA such

that G2 fails under this numeration.
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G2 and the choice of base system

I An foundational question about G2 is: how much of

information about arithmetic is required for the proof of

G2. If the base proof system does not contain enough

information about arithmetic, then G2 may fail.

I Dan Willard has constructed examples of c.e.

arithmetical theories that couldn’t prove the totality of

successor function but could prove their own canonical

consistency.

I Pakhomov defined a weak set theory H<ω and showed

that it proves its own consistency.
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G1 versus G2

I G2 holds for any consistent r.e. theory interpreting Q.

I But it is not true that G2 holds for any consistent r.e.

interpreting R.

I If S � T and G1 holds for S , then G1 holds for T .

I But it is not true that: if S � T and G2 holds for S ,

then G2 holds for T .
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Thanks for your attention!


