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Twenty years of p-adic model theory from Logic
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Aims of this lecture

@ The Ax-Kochen/Ershov theorems and principles have much broader and
deeper consequences than previously recognized.

@ Robinson’s theory of algebraically closed fields has reemerged as a source of
profound model theory.

e Continuous logic may offer new insights into the theory of valued fields.
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The p-adic numbers from algebraic functions

Hensel was led to the p-adic numbers through his investigations into the theory of

algebraic functions and an analogy he observed between such algebraic functions
and numbers.
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The p-adic numbers from algebraic functions

Hensel was led to the p-adic numbers through his investigations into the theory of
algebraic functions and an analogy he observed between such algebraic functions
and numbers.

A polynomial function f : C — C is by definition given a finite sum
f(t)=co+ cat+ ot?> + -4 cqt?
where d € N and each ¢; is a complex number.

More generally, any rational function f : C --» C, or, indeed, any algebraic
function, may be represented by an infinite sum

f(t)=cnt ™M+t "+ ot at+
at least in a neighborhood of the origin.

Considering all such formal series given together with the usual additional and
multiplication operations, we obtain the field C((t)) of formal Laurent series.
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The p-adic numbers as Laurent series in p

Fix now a prime number p. Then every natural number may be uniquely expressed
in its base-p expansion

n:ao+alp—|—azp2—|—...+adpd

where each a; € {0,1,...,(p —1)}. Hensel took the step of representing general
rational numbers by possibly infinite Laurent series in p. For example, if p =5,
then 3 3

= = 4343.543.254...43.59 ...

g =g t3+t3:5+ ot -

The rules for addition and multiplication for this field of p-adic numbers Q, may
be deduced from the usual rules for adding and multiplying integers taking care to
“carry” appropriately.

The p-adic integers, Z,, consist of those p-adic numbers expressible as Y~ ° ) a,p".
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The p-adics as a normed field

There is a natural way to define an absolute value on Q,: for a non-zero p-adic

number expressed as o = >~ a,p" where a, € {0,1,...,(p— 1)}, ay # 0, and
N € Z, we define |||, :== p~N € Ry. (We set ||0]|, :=0.)
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The p-adics as a normed field

There is a natural way to define an absolute value on Q,: for a non-zero p-adic
oo

number expressed as a = > " \ a,p” where a, € {0,1,...,(p— 1)}, ay #0, and
N € Z, we define |||, :== p~N € Ry. (We set ||0]|, :=0.)

@ Restricting || - ||, to Q regarded as a subfield of Q,, if @ = pM2 where a and
b are nonzero integers which are coprime to p, then ||a||, = p~V.

@ For any field k and any choice of real number v € (0, 1), the field of formal
Laurent series k((t)) , consisting of series >\ a,t” with a, € k and N € Z
admits a similar norm defined by || Y77\ a,t"||,, := " if ay # 0 and
[|0]] :== 0. In this way, taking v := %, the normed field of Laurent series
Fy((t)) over the field of p elements looks like the normed field of p-adic
numbers Q,, which is morally “F,((p))".
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Anticipating AKE: “interpreting” Q, in I,

The usual construction of the field of Laurent series gives something like an

infinitary interpretation of k((t)) in k. As such, one might expect that the theory
of k((t)) is determined by the theory of k.
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Anticipating AKE: “interpreting” Q, in I,

The usual construction of the field of Laurent series gives something like an
infinitary interpretation of k((t)) in k. As such, one might expect that the theory
of k((t)) is determined by the theory of k.

There is a related construction which starts with a perfect field k of characteristic
p and returns a local ring W/(k) (the p-typical Witt vectors) realized as N-indexed
sequences from k, with maximal ideal pW(k) and k = W(k)/pW (k). This
construction gives a precise sense in which Z, may be realized as “power series in
p over F,". In this sense, we see Q, as if it were interpreted in IF,,.
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Valued fields

Shortly after Hensel introduced the p-adic numbers as Laurent series in p, the
class of valued fields was axiomatized and then Q, was realized as the completion
of the field of rational numbers Q with respect to the p-adic norm just as R may
be obtained as the completion of Q with respect to the usual absolute value.
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Valued fields

Shortly after Hensel introduced the p-adic numbers as Laurent series in p, the
class of valued fields was axiomatized and then Q, was realized as the completion
of the field of rational numbers Q with respect to the p-adic norm just as R may
be obtained as the completion of Q with respect to the usual absolute value.

Already in Kiirshak’s 1913 Crelle paper “Uber Limesbildung und allgemeine
Kérpertheorie” we find the definition of a valued field as a field K given together
with a function || - || : K — Rx¢ satisfying universally:

° |[x]|=0<=x=0

o [Ixy[l = lIxII [lyl]

o [[14x|[ <1+ x|l
Moreover, the valuation is nontrivial if there is some a € K . {0,1} with ||a|| # 1

and the valuation is non-archimedian if the triangle inequality may be
strengthened to

o [Ix + yll < max{[Ix]], [lyll}
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Krull (or general) valuations

In the above definition of an absolute value, the values are taken in the
nonnegative real numbers, but only the ordered group structure of R is used. To
study valued fields from the point of view of first-order logic, it is better to allow
for an arbitrary ordered abelian group as the target for the valuation.
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Krull (or general) valuations

In the above definition of an absolute value, the values are taken in the
nonnegative real numbers, but only the ordered group structure of R is used. To
study valued fields from the point of view of first-order logic, it is better to allow
for an arbitrary ordered abelian group as the target for the valuation.

A valued field (K,|-|,T) is a field K given together with a function |- | : K* — T
from K to the ordered abelian group (T, -, 1) (with the convention that
[0l=0<Tand0-y=+-0=0 forany v € {0} UT) which satisfies universally
° |xy|=Ix| ly| and
o |x+y| < max{|x|,[y[}
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Krull (or general) valuations

In the above definition of an absolute value, the values are taken in the
nonnegative real numbers, but only the ordered group structure of R is used. To
study valued fields from the point of view of first-order logic, it is better to allow
for an arbitrary ordered abelian group as the target for the valuation.

A valued field (K,|-|,T) is a field K given together with a function |- | : K* — T
from K to the ordered abelian group (T, -, 1) (with the convention that
[0l=0<Tand0-y=+-0=0 forany v € {0} UT) which satisfies universally
° |xy|=Ix| ly| and
o |x+y| < max{|x|,[y[}

There are various choices of language in which to express the theory of valued
fields and different conventions are followed in the works we discuss. In the
simplest one-sorted version, we work with the expansion the language of rings by a
binary relation symbol D(x, y) to be interpreted as D(x,y) :<=> |x| < |y|. In this
language, ' may be interpreted at K*/ ~ where x ~ y <= D(x,y) & D(y, x).
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Valuation ring, maximal ideal, and residue field

For a valued field (K, |- [,T), the closed unit ball
Ok ={xeK : |x| <1}
is a subring of K, called its ring of integers, and the open unit ball
mg:={xeK : |x| <1}
is a maximal ideal. The quotient
kx = Ok /m

is the residue field.
We drop the subscript “K" if it is understood.

oInQp O=Z,={>1"panp" : ane€{0,....,(p—1)}} and k =F,.
o In F((t), @ =F[[t]l = {>",Zpant" : an € F}, and k = F.
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Algebraically closed valued fields

Theorem (A. Robinson, 1956)

The theory of non-trivially valued algebraically closed fields, ACVF, is the model
companion of the theory of valued fields.
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Decidable theories of fields

As of 1963 only three classes of fields were known to be decidable:

o finite fields (individually, for obvious reasons; that the class of finite fields is
decidable was shown by Ax only in 1968)

o real closed fields
o algebraically closed fields
and Tarski conjectured that there are no other fields with a decidable theory.
@ In a survey on (un)decidable theories composed in 1963 (and published in
English in 1965) Yu.L. Ershov, I. A. Lavrov, A.D. Taimanov and M.A.

Taitslin raise this and several related questons, such as whether every field of
formal Laurent series has an undecidable theory.

@ J. Robinson noted that these “fields are decidable because in some sense ‘so
many’ equations are solvable. This suggests that the p-adic fields are
promising candidates for counterexamples to Tarski's conjecture.”

Thomas Scanlon (UC Berkeley) Valued fields 12 August 2019 13 /23



Hensel's Lemma

Theorem

Let (K,|| - ||) be a complete valued field with valuation || - || : K* — R. Let
f(x) € Ok|[x] be a polynomial with integral coefficients. Suppose that b € O
satisfies ||f(b)|| < 1 = ||f'(b)||. Then there is some c € K with f(c) =0 and
16— cll = [I£(b)]].

o This lemma applies, in particular, to Q, and to fields of formal Laurent series
k((t))-
@ Quantifying over the coefficients of f, Hensel's Lemma may be expressed by

a countable set of first-order sentences. A valued field satisfying Hensel's
Lemma is called henselian.
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Ax-Kochen/Ershov theorem

Theorem (Ax and Kochen; Ershov)

Let (K,|-|) and (L,|-|) be two henselian valued fields whose residue fields have
characteristic zero. Then K = L if and only if kx = k; and Tk =T,.

o It follows that Q, and F,((t)) have the same first-order theory in the limit in

the sense that
[Tew/7 =[50/

for any non-principal ultrafilter % on the set of primes.

@ Fixing the prime p, if K and L are two henselian fields of characteristic zero
whose residue fields have characteristic p, then K = Lif and only if T =T,
and Ok /p"Ox = O /p" 0 for every n € 7.
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Definable sets in Q,

Various quantifier simplification theorems were known early in the work on the
model theory of Q.

@ The Ax-Kochen-Ershov theorem gives quantifier elimination for Q, in an
expanded language having the cross-section n+ p” and divisibility predicates
on the value group.

o Cohen gave a primitive recursive decision procedure for the theory of Q,
based on a cell decomposition theorem, still using the cross section n +— p".

@ Macintyre proved quantifier elimination for Q, in a language having
predicates P, defined by P,(x) :<= (3y)y" = x.
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From quantifier elimination to computation of integrals

Foraset S CZ7 and n € N, define N,(S) := #(S mod p") and consider the
Poincaré series

Ps(T):=  No(S)T"
n=0

When S is definable, then Ps(T) is a rational function of T.

In a paper published in 1984, Denef proves this theorem by relating the rationality
if Ps(T) to properties of integrals [, |f|5 where f is a definable function and
P

then uses quantifier elimination (and further properties) to reduce the
computation of the integrals to elementary series computations.
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From quantifier elimination to computation of integrals

Foraset S CZ7 and n € N, define N,(S) := #(S mod p") and consider the
Poincaré series

Ps(T):=  No(S)T"
n=0

When S is definable, then Ps(T) is a rational function of T.
In a paper published in 1984, Denef proves this theorem by relating the rationality
if Ps(T) to properties of integrals [, |f|5 where f is a definable function and
P
then uses quantifier elimination (and further properties) to reduce the

computation of the integrals to elementary series computations.

The first-order formulae describing S would make sense with p replaced by
another prime. Answering the question of how the resulting rational function
varies with p motivated the search for uniform quantifier elimination theorems.
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AKE as a principle: relative quantifier elimination

The Ax-Kochen-Ershov principle asserts that properties of the henselian field K
may be understood from the corresponding properties of its value group and
residue rings (or possibly from more general auxiliary interpretable structues such
as RV(K) = K* /(14 m) or the “geometric sorts").

For example, in the language with a cross-section, henselian fields of residue

characteristic zero have quantifier elimination relative to the value group and the
residue field k.
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Uniform p-adic integration to motivic integration

@ Bounds on the degrees of the rational functions appearing in Denef’s theorem
follow from uniform quantifier elimination theorems for the p-adics.
(Macintyre, APAL (1990) and Pas, JLMS (1990))

@ The uniformity is better expressed motivically: in the Poincaré series
Ps(T)=>_#(S mod p")T" rather than counting (S mod p") regard the
formula (S mod p") as a “number” in its own right as an element of an
appropriate Grothendieck ring. Denef and Loeser show in “Definable sets,
motives, and p-adic integrals’, JAMS (2000), that the rationality theorem
holds motivically.

@ The class of integrals to which theory of Denef-Loeser-Cluckers motivic
integration applies has expanded over the years including the kinds of
oscillating orbital integrals appearing in the Langland's Program.
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Robinson's ACVF returns

@ In "Integration in valued fields” (2006), Hrushovski and Kazhdan develop a
theory of motivic integration based on the theory ACVFg .

@ In the 2006 Crelle paper “Definable sets in algebraically closed valued fields:
elimination of imaginaries” followed by the 2008 Lecture Notes in Logic
“Stable domination and independence in algebraically closed valued fields”,
Haskell, Hrushovski, and Macperson describe the interpretable sets in ACVF
by developing a theory of “stable domination”.

@ In the 2016 Annals of Mathematics Studies monograph “Non-archimedean
tame topology and stably dominated types’ Hrushovski and Loeser construct
a theory of the geometry of nonarchimedean spaces using spaces of stably
dominated types.
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Stability for valued fields?

@ Theories of (non-trivially) valued fields can never be stable because they have
an interpretable order (the value group).

@ The AKE principle does hold for other stability-like properties. For instance, a
henselian field of residue characteristic zero has the independence property if
and only if either its residue field or its value group does.

@ The theory of stable domination suggests that the theory ACVF behaves as if
it were composed of stable parts parameterized by the value group. This
observation has been made precise through the theory of metastability.

@ Ben Yaacov shows that if ACVF is considered in continuous logic, then it is
stable. This move to continuous logic is the first necessary step in the (still
developing) Ben Yaacov-Hrushovski theory of fields with a product formula.
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Perfectoid spaces

@ The analogy between valued fields of characteristic p and those of mixed
characteristic has been given a precise and powerful formulation in Scholze's
theory of perfectoid spaces.

@ Behind this theory is the tilt/untilt correspondence: given a complete mixed
characteristic (0, p) valued field K whose value group is a dense subgroup of
R, and for which the residue ring &/p0 is perfect, the tilt K”, is a complete
valued field of characteristic p constructed from an inverse limit procedure.
Using the Witt vector construction followed by a appropriate quotient, from a
perfect, complete, nontrivially valued field L of characteristic p, one
constructs the untilt L* in such a way that (K”)* = K.

@ The correspondence transfers properties between K and K”. For example,
their absolute Galois groups are isomorphic.
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Perfectoid spaces

@ The analogy between valued fields of characteristic p and those of mixed
characteristic has been given a precise and powerful formulation in Scholze's
theory of perfectoid spaces.

@ Behind this theory is the tilt/untilt correspondence: given a complete mixed
characteristic (0, p) valued field K whose value group is a dense subgroup of
R, and for which the residue ring &/p0 is perfect, the tilt K”, is a complete
valued field of characteristic p constructed from an inverse limit procedure.
Using the Witt vector construction followed by a appropriate quotient, from a
perfect, complete, nontrivially valued field L of characteristic p, one
constructs the untilt L* in such a way that (K”)* = K.

@ The correspondence transfers properties between K and K”. For example,
their absolute Galois groups are isomorphic.

In work with Rideau and Simon, we show that this tilt/untilt correspondence may
be understood as a bi-interpretation in the sense of continuous logic.
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What else?
Some researchers of the model theory of valued fields

Meghan Anderson, Sylvy A be, Matthias Aschenbrenner, James Ax, $erban Basarab, Jochen Becker, Luc Bélair, Itai Ben
Yaacov, Anna Blaszczok, Ali Bleybel, Zoé Chatzidakis, Gregory Cherlin, Artem Chernikov, Raf Cluckers, Georges Comte, Pablo

Cubides Kovacsics, Paola D'Aquino, Luck Darniére, Francoise Delon, Jan Denef, J hid Derakhs} Philip Di Jan

Dobrowolski, Alf Dolich, Antoine Ducros, Salih Durham, Clifton Ealy, Philip Ehrlich, Kirsten Eisentréger, Yuri Ershov, Arno
Fehm, Joseph Flenner, Arthur Forey, Antongiulio Fornasiero, Tim Gardener, Allen Gehret, Julia Gordan, Nicholas Guzy, Thomas
Hales, Yatir Halevi, Immi Halupczok, Deirdre Haskell, Nadja Hempel, Martin Hils, Joris van der Hoeven, Jan Holly, Ehud

Hrushovski, Franziska Jahnka, Moshe Jarden, Will Johnson, Moshe Kamensky, Itay Kaplan, David Kazhdan, Julia Knight, Piotr

K Iski, Jochen Koeni, Simon Kochen, Krzysztof Krupinski, Franz-Viktor Kuhl Salma Kuhl Tristan

Kuijpers, Karen Lange, Chris Laskowski, Jung-uk Lee, Wan Lee, Eva Leenknegt, Gérard Leloup, Leonard Lipshitz, Francois

Loeser, Fares Maalouf, Angus Macintyre, Dugald Macpherson, Anatoly Malcev, Jana Mafikova, Nathana&l Mariaule, Ben Martin,

Christian Micl Samaria M

o, Kien Huu Nguyen, Johannes Nicaise, Krzysztof Jan Nowak, G8neng Onay, Alf

Onshuus, Koushik Pal, Jennifer Park, Johan Pas, Hector Paster, Thanases Pheidas, Anand Pillay, Jéréme Poineau, Francoise

Point, Florian Pop, Alexander Prestel, Serge Randriambololona, Silvain Rideau, R in Rioux, Abral Robi Ed |
Robil Julia Robi Raphael Robi Zach Robi Peter Rogq Thomas Scanl Joachim Schmid, Hans
Sct Philip S ft, Saharon Shelah, Sasha Shlapentokh, Pierre Simon, Sergei Starchenko, Tigran Takobyan, M

Tressl, Xavier Vidaux, Frank Wagner, Volker Weisspfenning, Yoav Yaffe, Jinhe Ye, Yimu Yin, Martin Ziegler

omas Scanlon

Valued fields 12 August 2019 23 /23



Aside: Orders of infinity
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Rychlik's Lemma
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Robinson's ACVF returns: Hrushovski-Kazhdan motivic
Integration

@ In motivic integration in the style of Kontsevich-Denef-Loeser-Cluckers, the
underlying valued field is always discretely valued so that the definable sets
used for counting are always internal to the residue field.

@ Using quantifier elimination for ACVF (and a deceptively simple averaging
technique that is only valid for residue characteristic zero), Hrushovski and
Kazhdan develop an alternate theory of motivic integration in which the sets
used for counting are definable sets in powers of RV, and thus take into
account both the residue field and the value group.

@ Using quantifier elimination for ACVF again, they show how to specialize this
theory to the usual theory of motivic integration.
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Robinson's ACVF returns: Stable domination and
Imaginaries
@ In general, an imaginary is an element of a

quotient X/E where X is definable and E is a
definable equivalence relation.

@ In valued fields, there are interpretable sets
which are not definably isomorphic to definable
sets (e.g. [ = K*/0%)

@ For ACVF, all such imaginaries are reducible to
"geometric imaginaries’, from quotients
GL,(K)/GL,(0) and GL,(K)/G? where
GO = ker(GL,(0) — GL,(k)).

@ The proof depends on developing a sense in
which stability theory at the level of the
residue field lifts to this unstable theory.
(Recall that a theory is unstable if there is a
formula ¢(x, y) and in some model sequences
(a)7o and (b;)72g with ¢(a;, by) <= i < j.)
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Robinson’s ACVF returns: Stably dominated types and
Berkovich geometry

Nonarchimedian geometry violates many of our
intuitions from Euclidean geometry. In
particular, the topology is totally disconnected.

Various enriched spaces have been proposed,
and this model theoretic approach takes the
stably dominated types as the points of the

geometric space.

Using the (pro-)definability of these spaces,
they may be analyzed through first-order logic
and it is shown, for instance, that these spaces
admit spaces definable in the value group as
deformation retracts.
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DIOPHANTINE PROBLEMS OVER LOCAL FIELDS L*

By Jaxss Ax and Sixox Kocms.

0. Introduction. A conjecture of Artin states that every form f of
de bles over Qy, the p-adic completion of the rationals,
has & non-trivial zero in Q. For the case d=2, this is & classical theorem
about quadratic forms. A proof of the conjecture for d—3 was given by
Tewis in [13].

Tn this paper we prove:

(1) For every positive infeger d there exists a fnite s of primes A = A (d)
such that for every prime p¢ A every form [ of degree d in n>
variables over Q, has @ non-trivial zero in Qp*

This and the analogous assertion for the completion of & number ficld &
(here A depends only on d and [¥: Q]) follow from Theorem 5. A farther
rosult obtained is the following:

(2) Let f be a polynomial without constant term of degree d in n>d
variabies over the ring Z of rational integers. Then there ezisls o
fnite set B of primes such that for every prime p¢ B, f has a non-
trivial zero in Qp.

(See the Corollary to Theorem 1) This re-proves a conjectare of
Lang [12].

These and similar resalis are special cases of the following general
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5\ £oBOpHTE, T OHO ATTGSPANSSCKE TIOTHO, OCIH HOPMEPOBANKS r - TeH-
senepo (en. [2]).
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